Results 31 to 40 of about 221 (69)

A multiplicity result for a fractional Kirchhoff equation in $\mathbb{R}^{N}$ with a general nonlinearity

open access: yes, 2017
In this paper we deal with the following fractional Kirchhoff equation \begin{equation*} \left(p+q(1-s) \iint_{\mathbb{R}^{2N}} \frac{|u(x)- u(y)|^{2}}{|x-y|^{N+2s}} \, dx\,dy \right)(-\Delta)^{s}u = g(u) \mbox{ in } \mathbb{R}^{N}, \end{equation*} where
Ambrosio, Vincenzo, Isernia, Teresa
core   +1 more source

Semilinear problems for the fractional laplacian with a singular nonlinearity [PDF]

open access: yes, 2015
The aim of this paper is to study the solvability of the problem (-Δ)s u = F(x,u) := λ f(x)/uγ + Mup in ω u > 0 in ω, u = 0 in RN \ ω, where Ω is a bounded smooth domain of RN, N > 2s, M ε {0, 1}, 0 0, λ > 0, p > 1 and f is a nonnegative function.
Barrios, B.   +3 more
core   +2 more sources

On mountain pass theorem and its application to periodic solutions of some nonlinear discrete systems

open access: yes, 2018
We obtain a new quantitative deformation lemma, and then gain a new mountain pass theorem. More precisely, the new mountain pass theorem is independent of the functional value on the boundary of the mountain, which improves the well known results (\cite ...
Ding, Liang   +2 more
core   +1 more source

Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions

open access: yesAdvances in Nonlinear Analysis
Let Ω⊂Rn\Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q∈]0,1[q\in ]0,1{[}, α∈L∞(Ω)\alpha \in {L}^{\infty }\left(\Omega ), with α>0\alpha \gt 0, and k∈Nk\in {\bf{N}}
Ricceri Biagio
doaj   +1 more source

Variational Principles for Monotone and Maximal Bifunctions [PDF]

open access: yes, 2003
2000 Mathematics Subject Classification: 49J40, 49J35, 58E30, 47H05We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces.
Chbani, Zaki, Riahi, Hassan
core  

Ground-state solutions for fractional Kirchhoff-Choquard equations with critical growth

open access: yesAdvances in Nonlinear Analysis
We study the following fractional Kirchhoff-Choquard equation: a+b∫RN(−Δ)s2u2dx(−Δ)su+V(x)u=(Iμ*F(u))f(u),x∈RN,u∈Hs(RN),\left\{\begin{array}{l}\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{\left|{\left(-\Delta )}^{\frac{s}{2}}u\right|}
Yang Jie, Chen Haibo
doaj   +1 more source

Existence via regularity of solutions for elliptic systems and saddle points of functionals of the calculus of variations

open access: yesAdvances in Nonlinear Analysis, 2017
The core of this paper concerns the existence (via regularity) of weak solutions in W01,2${W_{0}^{1,2}}$ of a class of elliptic systems such ...
Boccardo Lucio, Orsina Luigi
doaj   +1 more source

Concentration-compactness at the mountain pass level in semilinear elliptic problems

open access: yes, 2007
The concentration compactness framework for semilinear elliptic equations without compactness, set originally by P.-L.Lions for constrained minimization in the case of homogeneous nonlinearity, is extended here to the case of general nonlinearities in ...
TIntarev, Kyril
core   +2 more sources

Some remarks about the summability of nonlocal nonlinear problems

open access: yesAdvances in Nonlinear Analysis, 2015
In this note, we will study the problem (-Δ)psu = f(x) on Ω, u = 0 in ℝN∖Ω, where 0 < s < 1, (-Δ)ps is the nonlocal p-Laplacian defined below, Ω is a smooth bounded domain. The main point studied in this work is to prove, adapting the techniques used in [
Barrios Begoña   +2 more
doaj   +1 more source

On multiplicity of solutions to nonlinear Dirac equation with local super-quadratic growth

open access: yesAdvances in Nonlinear Analysis
In this article, we study the following nonlinear Dirac equation: −iα⋅∇u+aβu+V(x)u=g(x,∣u∣)u,x∈R3.-i\alpha \hspace{0.33em}\cdot \hspace{0.33em}\nabla u+a\beta u+V\left(x)u=g\left(x,| u| )u,\hspace{1em}x\in {{\mathbb{R}}}^{3}.
Liao Fangfang, Chen Tiantian
doaj   +1 more source

Home - About - Disclaimer - Privacy