Results 51 to 60 of about 1,101 (132)
Convergence theorems for common solutions of various problems with nonlinear mapping
In this paper, motivated and inspired by Zegeye and Shahzad (Nonlinear Anal. 70:2707-2716, 2009), Qin et al. (J. Comput. Appl. Math. 225(1):20-30, 2009) and Kimura and Takahashi (J. Math. Anal. Appl.
Kyung Soo Kim, J. Kim, W. H. Lim
semanticscholar +1 more source
This paper deals with the finite element approximation of a class of variational inequalities (VI) and quasi‐variational inequalities (QVI) with the right‐hand side depending upon the solution. We prove that the approximation is optimally accurate in L∞ combining the Banach fixed point theorem with the standard uniform error estimates in linear VIs and
M. Boulbrachene +2 more
wiley +1 more source
Blow-up solutions to the Hartree-Fock type Schrödinger equation with the critical rotational speed
In this article, we are concerned with the existence, non-existence, and blow-up behavior of normalized ground state solutions for the mass critical Hartree-Fock type Schrödinger equation with rotation i∂tu=−Δu+2V(x)u+2ΩLzu−λu−bu∫RN∣u(y)∣2∣x−y∣2dy,(t,x ...
Tu Yuanyuan, Wang Jun
doaj +1 more source
Variational Principles for Monotone and Maximal Bifunctions [PDF]
2000 Mathematics Subject Classification: 49J40, 49J35, 58E30, 47H05We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces.
Chbani, Zaki, Riahi, Hassan
core
In this paper, we investigate a class of accretive mappings called theH(⋅,⋅)-mixed mappingsin Banach spaces. We prove that the proximal-point mapping associated with theH(⋅,⋅)-mixed mapping issingle-valued and Lipschitz continuous.
S. Husain, Sanjeev Gupta, V. Mishra
semanticscholar +1 more source
Reflected forward‐backward SDEs and obstacle problems with boundary conditions
In this paper we study a class of forward‐backward stochastic differential equations with reflecting boundary conditions (FBSDER for short). More precisely, we consider the case in which the forward component of the FBSDER is restricted to a fixed, convex region, and the backward component will stay, at each fixed time, in a convex region that may ...
Jin Ma, Jakša Cvitanić
wiley +1 more source
The purpose of this paper is to investigate the problem of finding an approximate point of the common set of solutions of an equilibrium problem and a hierarchical fixed point problem in the setting of real Hilbert spaces.
A. Bnouhachem, S. Al-Homidan, Q. Ansari
semanticscholar +1 more source
Fixed points, intersection theorems, variational inequalities, and equilibrium theorems
From a fixed point theorem for compact acyclic maps defined on admissible convex sets in the sense of Klee, we first deduce collectively fixed point theorems, intersection theorems for sets with convex sections, and quasi‐equilibrium theorems. These quasi‐equilibrium theorems are applied to give simple and unified proofs of the known variational ...
Sehie Park
wiley +1 more source
Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays
In this paper, we consider functionals based on moments and non-linear entropies which have a linear growth in time in case of source-type so-lutions to the fast diffusion or porous medium equations, that are also known as Barenblatt solutions.
Dolbeault, Jean, Toscani, Giuseppe
core +2 more sources
NLS ground states on metric graphs with localized nonlinearities [PDF]
We investigate the existence of ground states for the focusing subcritical NLS energy on metric graphs with localized nonlinearities. In particular, we find two thresholds on the measure of the region where the nonlinearity is localized that imply ...
Tentarelli, Lorenzo
core +2 more sources

