Results 131 to 140 of about 2,562,718 (293)

The critical role of DNA damage‐inducible transcript 4 (DDIT4) in stemness character of leukemia cells and leukemia initiation

open access: yesMolecular Oncology, EarlyView.
Stemness properties, including quiescence, self‐renewal, and chemoresistance, are closely associated with leukemia relapse. Here, we demonstrate that DNA damage‐inducible transcript 4 (DDIT4) is induced in the hypoxic bone marrow niche and is essential for maintaining the stemness of AML1‐ETO9a leukemia cells.
Yishuang Li   +12 more
wiley   +1 more source

Unveiling unique protein and phosphorylation signatures in lung adenocarcinomas with and without ALK, EGFR, and KRAS genetic alterations

open access: yesMolecular Oncology, EarlyView.
Proteomic and phosphoproteomic analyses were performed on lung adenocarcinoma (LUAD) tumors with EGFR, KRAS, or EML4–ALK alterations and wild‐type cases. Distinct protein expression and phosphorylation patterns were identified, especially in EGFR‐mutated tumors. Key altered pathways included vesicle transport and RNA splicing.
Fanni Bugyi   +12 more
wiley   +1 more source

Olaparib synergy screen reveals Exemestane induces replication stress in triple‐negative breast cancer

open access: yesMolecular Oncology, EarlyView.
Screening 166 FDA‐approved anticancer drugs identifies the aromatase inhibitor Exemestane as a synergistic partner of PARP inhibitor Olaparib in BRCA‐proficient triple‐negative breast cancer. Exemestane induces ROS‐mediated replication stress, enhancing DNA damage and apoptosis alongside Olaparib.
Nur Aininie Yusoh   +5 more
wiley   +1 more source

RKIP overexpression reduces lung adenocarcinoma aggressiveness and sensitizes cells to EGFR‐targeted therapies

open access: yesMolecular Oncology, EarlyView.
RKIP, a metastasis suppressor protein, modulates key oncogenic pathways in lung adenocarcinoma. In silico analyses linked low RKIP expression to poor survival. Functional studies revealed RKIP overexpression reduces tumor aggressiveness and enhances sensitivity to EGFR‐targeted therapies, while its loss promotes resistance.
Ana Raquel‐Cunha   +10 more
wiley   +1 more source

Decrypting cancer's spatial code: from single cells to tissue niches

open access: yesMolecular Oncology, EarlyView.
Spatial transcriptomics maps gene activity across tissues, offering powerful insights into how cancer cells are organised, switch states and interact with their surroundings. This review outlines emerging computational, artificial intelligence (AI) and geospatial approaches to define cell states, uncover tumour niches and integrate spatial data with ...
Cenk Celik   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy