Results 1 to 10 of about 481 (41)
A proof of a trace formula by Richard Melrose
The goal of this article is to give a new proof of the wave trace formula proved by Richard Melrose in an impressive article. This trace formula is an extension of the Chazarain-Duistermaat-Guillemin trace formula (denoted as “CDG trace formula” in this ...
Colin de Verdière Yves
doaj +1 more source
Exceptional families of measures on Carnot groups
We study the families of measures on Carnot groups that have vanishing pp-module, which we call Mp{M}_{p}-exceptional families. We found necessary and sufficient Conditions for the family of intrinsic Lipschitz surfaces passing through a common point to ...
Franchi Bruno, Markina Irina
doaj +1 more source
Sub-Finsler Horofunction Boundaries of the Heisenberg Group
We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics, that is, those that arise as asymptotic cones of word metrics, on the Heisenberg group.
Fisher Nate, Golo Sebastiano Nicolussi
doaj +1 more source
A Cornucopia of Carnot Groups in Low Dimensions
Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating.
Le Donne Enrico, Tripaldi Francesca
doaj +1 more source
On sets with unit Hausdorff density in homogeneous groups
It is a longstanding conjecture that given a subset E of a metric space, if E has unit $\mathscr {H}^{\alpha }\llcorner E$ -density almost everywhere, then E is an $\alpha $ -rectifiable set. We prove this conjecture under the assumption that
Antoine Julia, Andrea Merlo
doaj +1 more source
Identifying 1-rectifiable measures in Carnot groups
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R.
Badger Matthew, Li Sean, Zimmerman Scott
doaj +1 more source
On some geometric properties of currents and Frobenius theorem [PDF]
In this note we announce some results, due to appear in [2], [3], on the structure of integral and normal currents, and their relation to Frobenius theorem.
Alberti, Giovanni, Massaccesi, Annalisa
core +2 more sources
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance.
Le Donne Enrico
doaj +1 more source
Non-minimality of corners in subriemannian geometry [PDF]
We give a short solution to one of the main open problems in subriemannian geometry. Namely, we prove that length minimizers do not have corner-type singularities.
C Golé +13 more
core +2 more sources
Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of
Balogh Zoltán M. +2 more
doaj +1 more source

