Results 31 to 40 of about 528 (63)

A note on sub-Riemannian structures associated with complex Hopf fibrations

open access: yes, 2012
Sub-Riemannian structures on odd-dimensional spheres respecting the Hopf fibration naturally appear in quantum mechanics. We study the curvature maps for such a sub-Riemannian structure and express them using the Riemannian curvature tensor of the Fubini-
Chang   +8 more
core   +1 more source

An Approach to Studying Quasiconformal Mappings on Generalized Grushin Planes [PDF]

open access: yes, 2014
We demonstrate that the complex plane and a class of generalized Grushin planes $G_r$, where $r$ is a function satisfying specific requirements, are quasisymmetrically equivalent.
Ackermann, Colleen
core   +1 more source

Moving frames for cotangent bundles

open access: yes, 2002
Cartan's moving frames method is a standard tool in riemannian geometry. We set up the machinery for applying moving frames to cotangent bundles and its sub-bundles defined by non-holonomic constraints.Comment: 13 pages, to appear in Rep.
Ehlers, K. M.   +2 more
core   +1 more source

Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups

open access: yesAnalysis and Geometry in Metric Spaces, 2013
In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0.
Capogna Luca   +2 more
doaj   +1 more source

Numerical Methods and Closed Orbits in the Kepler-Heisenberg Problem

open access: yes, 2017
The Kepler-Heisenberg problem is that of determining the motion of a planet around a sun in the sub-Riemannian Heisenberg group. The sub-Riemannian Hamiltonian provides the kinetic energy, and the gravitational potential is given by the fundamental ...
Dods, Victor, Shanbrom, Corey
core   +1 more source

On Conditions for Unrectifiability of a Metric Space

open access: yesAnalysis and Geometry in Metric Spaces, 2014
We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a ...
Hajłasz Piotr, Malekzadeh Soheil
doaj   +1 more source

Existence of isoperimetric regions in sub-Finsler nilpotent groups

open access: yesAnalysis and Geometry in Metric Spaces
We consider a nilpotent Lie group with a bracket-generating distribution ℋ{\mathcal{ {\mathcal H} }} and an asymmetric left-invariant norm ∣⋅∣K{| \cdot | }_{K} induced by a convex body K⊆RkK\subseteq {{\mathbb{R}}}^{k} containing 0 in its interior.
Pozuelo Julián
doaj   +1 more source

A counterexample to gluing theorems for MCP metric measure spaces

open access: yes, 2018
Perelman's doubling theorem asserts that the metric space obtained by gluing along their boundaries two copies of an Alexandrov space with curvature $\geq \kappa$ is an Alexandrov space with the same dimension and satisfying the same curvature lower ...
Rizzi, Luca
core   +2 more sources

Nos\'e-Thermostated Mechanical Systems on the n-Torus

open access: yes, 2017
Let $H(q,p) = \frac12 | p |^2 + V(q)$ be an $n$-degree of freedom $C^r$ mechanical Hamiltonian on the cotangent bundle of the $n$-torus where $r>2n+2$. When the metric $| * |$ is flat, the Nos\'e-thermostated system associated to $H$ is shown to have a ...
Butler, Leo T.
core   +1 more source

Metric lines in the jet space

open access: yesAnalysis and Geometry in Metric Spaces
In the realm of sub-Riemannian manifolds, a relevant question is: what are the metric lines (isometric embedding of the real line)? The space of kk-jets of a real function of one real variable xx, denoted by Jk(R,R){J}^{k}\left({\mathbb{R}},{\mathbb{R}}),
Bravo-Doddoli Alejandro
doaj   +1 more source

Home - About - Disclaimer - Privacy