Results 21 to 30 of about 1,492 (57)
On the problem of prescribing weighted scalar curvature and the weighted Yamabe flow
The weighted Yamabe problem introduced by Case is the generalization of the Gagliardo-Nirenberg inequalities to smooth metric measure spaces. More precisely, given a smooth metric measure space (M,g,e−ϕdVg,m)\left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m), the ...
Ho Pak Tung, Shin Jinwoo
doaj +1 more source
Limits of Riemannian 4‐manifolds and the symplectic geometry of their twistor spaces
Abstract The twistor space of a Riemannian 4‐manifold carries two almost complex structures, J+ and J−, and a natural closed 2‐form ω. This article studies limits of manifolds for which ω tames either J+ or J−. This amounts to a curvature inequality involving self‐dual Weyl curvature and Ricci curvature, and which is satisfied, for example, by all anti‐
Joel Fine
wiley +1 more source
Weakly Noncollapsed RCD Spaces with Upper Curvature Bounds
We show that if a CD(K, n) space (X, d, f ℋn) with n ≥ 2 has curvature bounded above by κ in the sense of Alexandrov then f is constant.
Kapovitch Vitali, Ketterer Christian
doaj +1 more source
Smooth long‐time existence of Harmonic Ricci Flow on surfaces
Abstract We prove that at a finite singular time for the Harmonic Ricci Flow on a surface of positive genus both the energy density of the map component and the curvature of the domain manifold have to blow up simultaneously. As an immediate consequence, we obtain smooth long‐time existence for the Harmonic Ricci Flow with large coupling constant.
Reto Buzano, Melanie Rupflin
wiley +1 more source
On the geometry of Riemannian manifolds with a Lie structure at infinity
We study a generalization of the geodesic spray and give conditions for noncomapct manifolds with a Lie structure at infinity to have positive injectivity radius. We also prove that the geometric operators are generated by the given Lie algebra of vector fields.
Bernd Ammann +2 more
wiley +1 more source
Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces
The aim of this note is to generalize to the class of non collapsed RCD(K, N) metric measure spaces the volume bound for the effective singular strata obtained by Cheeger and Naber for non collapsed Ricci limits in [13].
Antonelli Gioacchino +2 more
doaj +1 more source
Skew‐symmetric vector fields on a CR‐submanifold of a para‐Kählerian manifold
We deal with a CR‐submanifold M of a para‐Kählerian manifold M˜, which carries a J‐skew‐symmetric vector field X. It is shown that X defines a global Hamiltonian of the symplectic form Ω on M⊤ and JX is a relative infinitesimal automorphism of Ω. Other geometric properties are given.
Adela Mihai, Radu Rosca
wiley +1 more source
On the projections of Laplacians under Riemannian submersions
We give a condition on Riemannian submersions from a Riemannian manifold M to a Riemannian manifold N which will ensure that it induces a differential operator on N from the Laplace‐Beltrami operator on M. Equivalently, this condition ensures that a Riemannian submersion maps Brownian motion to a diffusion.
Huiling Le
wiley +1 more source
The concentration-compactness principle for the Trudinger–Moser-type inequality in the Euclidean space was established crucially relying on the Pólya–Szegő inequality which allows to adapt the symmetrization argument.
Li Jungang, Lu Guozhen, Zhu Maochun
doaj +1 more source
Quaternion CR‐submanifolds of a quaternion Kaehler manifold
We study the quaternion CR‐submanifolds of a quaternion Kaehler manifold. More specifically we study the properties of the canonical structures and the geometry of the canonical foliations by using the Bott connection and the index of a quaternion CR‐submanifold.
Bassil J. Papantoniou, M. Hasan Shahid
wiley +1 more source

