Results 1 to 10 of about 738 (35)
We give a complete classification of left invariant para-Kähler structures on four-dimensional simply connected Lie groups up to an automorphism. As an application we discuss some curvatures properties of the canonical connection associated to these ...
Mansouri M. W., Oufkou A.
doaj +1 more source
On Degenerate 3-(α, δ)-Sasakian Manifolds
We propose a new method to construct degenerate 3-(α, δ)-Sasakian manifolds as fiber products of Boothby-Wang bundles over hyperkähler manifolds. Subsequently, we study homogeneous degenerate 3-(α, δ)-Sasakian manifolds and prove that no non-trivial ...
Goertsches Oliver +2 more
doaj +1 more source
Locally conformally balanced metrics on almost abelian Lie algebras
We study locally conformally balanced metrics on almost abelian Lie algebras, namely solvable Lie algebras admitting an abelian ideal of codimension one, providing characterizations in every dimension. Moreover, we classify six-dimensional almost abelian
Paradiso Fabio
doaj +1 more source
An Integrability Condition for Simple Lie Groups II [PDF]
It is shown that a simple Lie group $G$ ($ \neq {\rm SL}_2$) can be locally characterised by an integrability condition on an $\operatorname{Aut}(\mathfrak{g})$ structure on the tangent bundle, where $\operatorname{Aut}(\mathfrak{g})$ is the automorphism
Min-Oo, Maung
core +2 more sources
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group [PDF]
In this note we prove that the Heisenberg group with a left-invariant pseudo-Riemannian metric admits a completely integrable totally geodesic distribution of codimension 1.
Batat, Wafaa, Rahmani, Salima
core +2 more sources
A remark on the Bismut-Ricci form on 2-step nilmanifolds [PDF]
In this note we observe that on a 2-step nilpotent Lie group equipped with a left-invariant SKT structure the (1,1)-part of the Bismut-Ricci form is seminegative definite.
Pujia, Mattia, Vezzoni, Luigi
core +3 more sources
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups [PDF]
Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$.
Lauret, Emilio Agustin
core +2 more sources
Complex structures on the complexification of a real Lie algebra
Let g = a+b be a Lie algebra with a direct sum decomposition such that a and b are Lie subalgebras. Then, we can construct an integrable complex structure J̃ on h = ℝ(gℂ) from the decomposition, where ℝ(gℂ) is a real Lie algebra obtained from gℂby the ...
Yamada Takumi
doaj +1 more source
Homogeneous Riemannian Structures on Berger 3-Spheres [PDF]
13 pages.-- MSC2000 codes: 53C30, 53C25.The homogeneous Riemannian structures on the 3-dimensional Berger spheres, their corresponding reductive decompositions and the associated groups of isometries are obtained.
Grosshans, Frank D. +2 more
core +1 more source
Ricci-flat and Einstein pseudoriemannian nilmanifolds
This is partly an expository paper, where the authors’ work on pseudoriemannian Einstein metrics on nilpotent Lie groups is reviewed. A new criterion is given for the existence of a diagonal Einstein metric on a nice nilpotent Lie group.
Conti Diego, Rossi Federico A.
doaj +1 more source

