Results 1 to 10 of about 16 (16)
A regularized gradient flow for the p-elastic energy
We prove long-time existence for the negative L2{L}^{2}-gradient flow of the p-elastic energy, p≥2p\ge 2, with an additive positive multiple of the length of the curve.
Blatt Simon +2 more
doaj +1 more source
This article presents new local and global gradient estimates of Li-Yau type for positive solutions to a class of nonlinear elliptic equations on smooth metric measure spaces involving the Witten Laplacian.
Taheri Ali, Vahidifar Vahideh
doaj +1 more source
In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0.
Capogna Luca +2 more
doaj +1 more source
Smooth long‐time existence of Harmonic Ricci Flow on surfaces
Abstract We prove that at a finite singular time for the Harmonic Ricci Flow on a surface of positive genus both the energy density of the map component and the curvature of the domain manifold have to blow up simultaneously. As an immediate consequence, we obtain smooth long‐time existence for the Harmonic Ricci Flow with large coupling constant.
Reto Buzano, Melanie Rupflin
wiley +1 more source
On the stability of harmonic maps under the homogeneous Ricci flow
In this work we study properties of stability and non-stability of harmonic maps under the homogeneous Ricci flow.We provide examples where the stability (non-stability) is preserved under the Ricci flow and an example where the Ricci flow does not ...
Prado Rafaela F. do, Grama Lino
doaj +1 more source
A survey on Inverse mean curvature flow in ROSSes
In this survey we discuss the evolution by inverse mean curvature flow of star-shaped mean convex hypersurfaces in non-compact rank one symmetric spaces.
Pipoli Giuseppe
doaj +1 more source
A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator
In this paper, we present a new proof of the upper and lower bound estimates for the first Dirichlet eigenvalue λ1D(B(p,r))$\lambda _1^D \left({B\left({p,r} \right)} \right)$ of Laplacian operator for the manifold with Ricci curvature Rc ≥ −K, by using
Li Chang-Jun, Gao Xiang
doaj +1 more source
2‐Conformal Vector Fields on the Model Sol Space and Hyperbolic Ricci Solitons
In this study, we present the notion of 2‐conformal vector fields on Riemannian and semi‐Riemannian manifolds, which are an extension of Killing and conformal vector fields. Next, we provide suitable vector fields in Sol space that are 2‐conformal. A few implications of 2‐conformal vector fields in hyperbolic Ricci solitons are investigated.
Rawan Bossly +3 more
wiley +1 more source
In this paper we prove gradient estimates of both elliptic and parabolic types, specifically, of Souplet-Zhang, Hamilton and Li-Yau types for positive smooth solutions to a class of nonlinear parabolic equations involving the Witten or drifting Laplacian
Taheri Ali, Vahidifar Vahideh
doaj +1 more source
A minimising movement scheme for the <i>p</i>-elastic energy of curves. [PDF]
Blatt S, Hopper CP, Vorderobermeier N.
europepmc +1 more source

