Results 1 to 10 of about 34 (34)
On LCK solvmanifolds with a property of Vaisman solvmanifolds
The purpose in this paper is to determine a locally conformal Kähler solvmanifold such that the nilradical of the solvable Lie group is constructed by a Heisenberg Lie group.
Sawai Hiroshi
doaj +1 more source
Estimates for a function on almost Hermitian manifolds
We study some estimates for a real-valued smooth function φ on almost Hermitian manifolds. In the present paper, we show that ∂∂∂̄ φ and ∂̄∂∂̄ φ can be estimated by the gradient of the function φ.
Kawamura Masaya
doaj +1 more source
An a priori C0-estimate for the Fu-Yau equation on compact almost astheno-Kähler manifolds
We investigate the Fu-Yau equation on compact almost astheno-Kähler manifolds and show an a priori C0-estiamte for a smooth solution of the equation.
Kawamura Masaya
doaj +1 more source
On a k-th Gauduchon almost Hermitian manifold
We characterize the k-th Gauduchon condition and by applying its characterization, we reprove that a compact k-th Gauduchon, semi-Kähler manifold becomes quasi-Kähler, which tells us that in particular, a compact almost pluriclosed, semi-Kähler manifold ...
Kawamura Masaya
doaj +1 more source
Second Chern-Einstein metrics on four-dimensional almost-Hermitian manifolds
We study four-dimensional second Chern-Einstein almost-Hermitian manifolds. In the compact case, we observe that under a certain hypothesis, the Riemannian dual of the Lee form is a Killing vector field.
Barbaro Giuseppe, Lejmi Mehdi
doaj +1 more source
On Kähler-like and G-Kähler-like almost Hermitian manifolds
We introduce Kähler-like, G-Kähler-like metrics on almost Hermitian manifolds. We prove that a compact Kähler-like and G-Kähler-like almost Hermitian manifold equipped with an almost balanced metric is Kähler.
Kawamura Masaya
doaj +1 more source
On the Kähler-likeness on almost Hermitian manifolds
We define a Kähler-like almost Hermitian metric. We will prove that on a compact Kähler-like almost Hermitian manifold (M2n, J, g), if it admits a positive ∂ ̄∂-closed (n − 2, n − 2)-form, then g is a quasi-Kähler metric.
Kawamura Masaya
doaj +1 more source
On line bundles arising from the LCK structure over locally conformal Kähler solvmanifolds
We can construct a real line bundle arising from the locally conformal Kähler (LCK) structure over an LCK manifold. We study the properties of this line bundle over an LCK solvmanifold whose complex structure is left-invariant. Mainly, we prove that this
Yamada Takumi
doaj +1 more source
Quasi-Statistical Manifolds with Almost Hermitian and Almost Anti-Hermitian Structures
Let (M, g, ∇) be a 2n-dimensional quasi-statistical manifold that admits a pseudo-Riemannian metric g (or h) and a linear connection ∇ with torsion. This paper aims to study an almost Hermitian structure (g, J ) and an almost anti-Hermitian structure (h,
Aktaş Buşra, Gezer Aydin, Durmaz Olgun
doaj +1 more source
Homology groups in CR-warped products of complex space forms. [PDF]
Li Y +4 more
europepmc +1 more source

