Results 31 to 40 of about 685 (102)

The fractional Hartree equation without the Ambrosetti-Rabinowitz condition [PDF]

open access: yes, 2016
We consider a class of pseudo-relativistic Hartree equations in presence of general nonlinearities not satisfying the Ambrosetti-Rabinowitz condition.
Francesconi, Mauro, Mugnai, Dimitri
core   +1 more source

Critical point theorems

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 29, Issue 7, Page 429-438, 2002., 2002
Let H be a Hilbert space such that H = V ⊕ W, where V and W are two closed subspaces of H. We generalize an abstract theorem due to Lazer et al. (1975) and a theorem given by Moussaoui (1990‐1991) to the case where V and W are not necessarily finite dimensional.
H. Boukhrisse, M. Moussaoui
wiley   +1 more source

Anisotropic problems with unbalanced growth

open access: yesAdvances in Nonlinear Analysis, 2020
The main purpose of this paper is to study a general class of (p, q)-type eigenvalues problems with lack of compactness. The reaction is a convex-concave nonlinearity described by power-type terms.
Alsaedi Ahmed, Ahmad Bashir
doaj   +1 more source

Existence and concentration of ground-states for fractional Choquard equation with indefinite potential

open access: yesAdvances in Nonlinear Analysis, 2022
This paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential: (−Δ)su+V(x)u=∫RNA(εy)∣u(y)∣p∣x−y∣μdyA(εx)∣u(x)∣p−2u(x),x∈RN,{\left(-\Delta )}^{s}u+V ...
Zhang Wen, Yuan Shuai, Wen Lixi
doaj   +1 more source

Infinitely many periodic solutions for second order Hamiltonian systems [PDF]

open access: yes, 2011
In this paper, we study the existence of infinitely many periodic solutions for second order Hamiltonian systems $\ddot{u}+\nabla_u V(t,u)=0$, where $V(t, u)$ is either asymptotically quadratic or superquadratic as $|u|\to \infty$.Comment: to appear in ...
Liu, Chungen, Zhang, Qingye
core   +1 more source

On the existence of solutions to a fourth‐order quasilinear resonant problem

open access: yesAbstract and Applied Analysis, Volume 7, Issue 3, Page 125-133, 2002., 2002
By means of Morse theory we prove the existence of a nontrivial solution to a superlinear p‐harmonic elliptic problem with Navier boundary conditions having a linking structure around the origin. Moreover, in case of both resonance near zero and nonresonance at +∞ the existence of two nontrivial solutions is shown.
Shibo Liu, Marco Squassina
wiley   +1 more source

Homoclinic orbits for discrete Hamiltonian systems with subquadratic potential

open access: yesAdvances in Differential Equations, 2013
In the present paper, we deal with the existence and multiplicity of homoclinic solutions of the second-order self-adjoint discrete Hamiltonian system △[p(n)△u(n−1)]−L(n)u(n)+∇W(n,u(n))=0.
Xiaoyan Lin, Xianhua Tang
semanticscholar   +2 more sources

A version of Zhong′s coercivity result for a general class of nonsmooth functionals

open access: yesAbstract and Applied Analysis, Volume 7, Issue 11, Page 601-612, 2002., 2002
A version of Zhong′s coercivity result (1997) is established for nonsmooth functionals expressed as a sum Φ + Ψ, where Φ is locally Lipschitz and Ψ is convex, lower semicontinuous, and proper. This is obtained as a consequence of a general result describing the asymptotic behavior of the functions verifying the above structure hypothesis.
D. Motreanu, V. V. Motreanu, D. Paşca
wiley   +1 more source

New potential condition on homoclinic orbits for a class of discrete Hamiltonian systems

open access: yesAdvances in Differential Equations, 2014
In the present paper, we establish an existence criterion to guarantee that the second-order self-adjoint discrete Hamiltonian system △[p(n)△u(n−1)]−L(n)u(n)+∇W(n,u(n))=0 has a nontrivial homoclinic solution, which does not need periodicity and ...
Xiaoping Wang
semanticscholar   +2 more sources

Ground states and multiple solutions for Hamiltonian elliptic system with gradient term

open access: yesAdvances in Nonlinear Analysis, 2020
This paper is concerned with the following nonlinear Hamiltonian elliptic system with gradient ...
Zhang Wen, Zhang Jian, Mi Heilong
doaj   +1 more source

Home - About - Disclaimer - Privacy