Results 61 to 70 of about 685 (102)
The β-Flatness Condition in CR Spheres
This work is an adaptation of one of the methods based on the variational critical points at infinity theory of Abbas Bahri [1, 3, 2, 4, 5, 6, 7, 8] to the Cauchy–Riemann settings.
Gamara Najoua, Hafassa Boutheina
doaj +1 more source
New multiplicity results in prescribing Q-curvature on standard spheres
In this paper, we study the problem of prescribing Q-Curvature on higher dimensional standard spheres. The problem consists in finding the right assumptions on a function K so that it is the Q-Curvature of a metric conformal to the standard one on the ...
Ben Ayed Mohamed, El Mehdi Khalil
doaj +1 more source
Homoclinic solutions for second order discrete p-Laplacian systems
Some new existence theorems for homoclinic solutions are obtained for a class of second-order discrete p-Laplacian systems by critical point theory, a homoclinic orbit is obtained as a limit of 2kT-periodic solutions of a certain sequence of the second ...
Xiaofei He, Peng Chen
semanticscholar +1 more source
Abstract and Applied Analysis, Volume 3, Issue 3-4, Page 293-318, 1998.
E. N. Dancer, K. Y. Lam, S. Yan
wiley +1 more source
Large Energy Bubble Solutions for Schrödinger Equation with Supercritical Growth
We consider the following nonlinear Schrödinger equation involving supercritical growth:
Guo Yuxia, Liu Ting
doaj +1 more source
Single Blow up Solutions for a Slightly Subcritical Biharmonic Equation [PDF]
In this paper, we consider a biharmonic equation under the Navier boundary condition and with a nearly critical exponent $(P_\epsilon): \Delta^2u=u^{9-\epsilon}, u>0$ in $\Omega$ and $u=\Delta u=0$ on $\partial\Omega$, where $\Omega$ is a smooth bounded ...
Mehdi, Khalil El
core +3 more sources
Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system
This article is concerned with the following Hamiltonian elliptic system: −ε2Δu+εb→⋅∇u+u+V(x)v=Hv(u,v)inRN,−ε2Δv−εb→⋅∇v+v+V(x)u=Hu(u,v)inRN,\left\{\begin{array}{l}-{\varepsilon }^{2}\Delta u+\varepsilon \overrightarrow{b}\cdot \nabla u+u+V\left(x)v={H}_ ...
Zhang Jian, Zhou Huitao, Mi Heilong
doaj +1 more source
Three solutions for a class of quasilinear elliptic systems involving the p(x)-Laplace operator
The existence of at least three weak solutions is established for a class of quasilinear elliptic systems involving the p(x)-Laplace operator with Neumann boundary condition.
Honghui Yin, Zuodong Yang
semanticscholar +1 more source
Multiple concentrating solutions for a fractional (p, q)-Choquard equation
We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon ...
Ambrosio Vincenzo
doaj +1 more source
Solvability of a second-order Hamiltonian system with impulsive effects
In this paper, a class of second-order Hamiltonian systems with impulsive effects are considered. By using critical point theory, we obtain some existence theorems of solutions for the nonlinear impulsive problem.
B. Dai, Jia Guo
semanticscholar +1 more source