Results 1 to 10 of about 605 (56)
Unique continuation theorems for biharmonic maps. [PDF]
Abstract We prove several unique continuation results for biharmonic maps between Riemannian manifolds.
Branding V, Oniciuc C.
europepmc +2 more sources
Minimal surfaces with non-trivial geometry in the three-dimensional Heisenberg group
We study symmetric minimal surfaces in the three-dimensional Heisenberg group Nil3 using the generalized Weierstrass type representation, the so-called loop group method.
Dorfmeister Josef F.+2 more
doaj +1 more source
A study on magnetic curves in trans-Sasakian manifolds
In this paper, we focused on biharmonic, f-harmonic and f-biharmonic magnetic curves in trans-Sasakian manifolds. Moreover, we obtain necessary and su cient conditions for magnetic curves as well as Legendre magnetic curves to be biharmonic, f-harmonic ...
Bozdağ Şerife Nur
doaj +1 more source
An elastic graph is a graph with an elasticity associated to each edge. It may be viewed as a network made out of ideal rubber bands. If the rubber bands are stretched on a target space there is an elastic energy. We characterize when a homotopy class of
DYLAN P. THURSTON
doaj +1 more source
Minimizing energy among homotopic maps
We study an energy minimizing sequence {ui} in a fixed homotopy class of smooth maps from a 3‐manifold. After deriving an approximate monotonicity property for {ui} and a continuous version of the Luckhaus lemma (Simon, 1996) on S2, we show that, passing to a subsequence, {ui} converges strongly in W1,2 topology wherever there is small energy ...
Pengzi Miao
wiley +1 more source
Convolutions of harmonic right half-plane mappings
We first prove that the convolution of a normalized right half-plane mapping with another subclass of normalized right half-plane mappings with the dilatation −z(a+z)/(1+az)$ - z(a + z)/(1 + az)$ is CHD (convex in the horizontal direction) provided a=1$a
Li YingChun, Liu ZhiHong
doaj +1 more source
Local solvability of a constrainedgradient system of total variation
A 1‐harmonic map flow equation, a gradient system of total variation where values of unknowns are constrained in a compact manifold in ℝN, is formulated by the use of subdifferentials of a singular energy—the total variation. An abstract convergence result is established to show that solutions of approximate problem converge to a solution of the limit ...
Yoshikazu Giga+2 more
wiley +1 more source
F-biharmonic maps into general Riemannian manifolds
Let ψ:(M, g) → (N, h) be a map between Riemannian manifolds (M, g) and (N, h).
Mi Rong
doaj +1 more source
Families of (1, 2)‐symplectic metrics on full flag manifolds
We obtain new families of (1, 2)‐symplectic invariant metrics on the full complex flag manifolds F(n). For n ≥ 5, we characterize n − 3 different n‐dimensional families of (1, 2)‐symplectic invariant metrics on F(n). Each of these families corresponds to a different class of nonintegrable invariant almost complex structures on F(n).
Marlio Paredes
wiley +1 more source
Harmonicity of horizontally conformal maps and spectrum of the Laplacian
We discuss the harmonicity of horizontally conformal maps and their relations with the spectrum of the Laplacian. We prove that if Φ : M → N is a horizontally conformal map such that the tension field is divergence free, then Φ is harmonic. Furthermore, if N is noncompact, then Φ must be constant.
Gabjin Yun
wiley +1 more source