Results 81 to 90 of about 76,430 (281)

Mixed-Criticality Scheduling on 5G New Radio

open access: yes, 2022
AbstractCompared to industrial wired networks, 5G can improve device mobility and reduce the cost of networking. However, the real-time performance and reliability of 5G NR (new radio) still need to be improved to satisfy industrial applications’ requirements.
Xi Jin, Changqing Xia, Chi Xu, Dong Li
openaire   +1 more source

5G Cellular User Equipment: From Theory to Practical Hardware Design

open access: yes, 2017
Research and development on the next generation wireless systems, namely 5G, has experienced explosive growth in recent years. In the physical layer (PHY), the massive multiple-input-multiple-output (MIMO) technique and the use of high GHz frequency ...
Dong, Xiaodai, Huo, Yiming, Xu, Wei
core   +1 more source

Powering the Future: A Cobalt‐Based Catalyst for Longer‐Lasting Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A novel N‐doped graphitic shell‐encapsulated Co catalyst reveals superior bifunctional ORR/OER activity in alkaline media, empowering outstanding liquid and quasi‐solid‐state ZAB activity. The system delivers long‐term durability, a peak power density of 127 mW cm−2 and successfully powers an LED and a mini fan.
Manami Banerjee   +10 more
wiley   +1 more source

Experimental 5G New Radio integration with VLC

open access: yes2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2018
In this paper, integration of 5G New Radio (5G NR) with a Visible Light Communication (VLC) downlink architecture is proposed. This scheme combines two complementary wireless technologies: upcoming 5G NR and VLC to offer indoor enhanced wireless hybrid access able to provide each User Equipment (UE) with very high data rate and positioning support. The
Shi, Lina   +5 more
openaire   +3 more sources

Integrative Approaches for DNA Sequence‐Controlled Functional Materials

open access: yesAdvanced Functional Materials, EarlyView.
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo   +4 more
wiley   +1 more source

5G New Radio Prototype Implementation Based on SDR

open access: yesCommunications and Network, 2020
The fifth generation (5G) New Radio (NR) has been developed to provide significant improvements in scalability, flexibility, and efficiency in terms of power usage and spectrum as well. To meet the 5G vision, service and performance requirements, various candidate technologies have been proposed in 5G new radio; some are extensions of 4G and, some are ...
Lama Y. Hosni   +3 more
openaire   +2 more sources

Oral Dosed Organo‐Silica Nanoparticles Restore Glucose Homeostasis and β‐Cell Function in Diabetes Rats

open access: yesAdvanced Functional Materials, EarlyView.
An oral nanoplatform, MOP@T@D, which can maintain glucose homeostasis and restore islet β cells in diabetic rats is developed. It achieves efficient intestinal absorption and liver‐targeted delivery. The nanoparticle disintegrates only in response to hyperglycemia to release insulin on demand and provides antioxidant protection through selenoprotein ...
Chenxiao Chu   +14 more
wiley   +1 more source

Analysis of 5G New Radio Uplink Signals on an Analogue-RoF System Based on DSP-Assisted Channel Aggregation

open access: yesApplied Sciences, 2018
The 3rd Generation Partnership Project (3GPP) is in the process of developing 5th generation (5G) radio access technology, the so-called new radio (NR). The aim is to achieve the performance requirements forIMT-2020 radio interface technology.
Befekadu D. Mengesha   +2 more
doaj   +1 more source

Endothelial Cells Angiogenesis in Sulfated Glycosaminoglycan (GAG) Hydrogels Enhanced by Bioactive Glass‐Released Ions

open access: yesAdvanced Functional Materials, EarlyView.
A mechanically tunable hydrogel composed of gelatin, chondroitin sulfate and laminin promotes angiogenesis in vitro without the supplement of growth factors. Endothelial cells morphogenesis was further enhanced by medium conditioned with bioactive glass 58S‐released ions (Ca and Si), thus offering a promising strategy to vascularize 3D tissue ...
Marco Piazzoni   +13 more
wiley   +1 more source

Electrochemically Driven Dissipative Growth of Affinity Hydrogels for Bioresponsive Interfaces

open access: yesAdvanced Functional Materials, EarlyView.
Voltage pulses drive the growth and reinforcement of hydrogel films under dissipative conditions. This biocompatible strategy enables efficient integration of affinity ligands into the hydrogel matrix, enhancing the selective capture of growth factors and allowing precise temporal control over their release, making them well‐suited as adaptive ...
Roberto Baretta, Marco Frasconi
wiley   +1 more source

Home - About - Disclaimer - Privacy