Results 231 to 240 of about 2,172,523 (338)
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source
Study on Particle-Bubble Interaction and Separation in Fluidized-Bed Flotation. [PDF]
Yin Q, Wang M, Liao X, Liu G, Yang H.
europepmc +1 more source
High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk+7 more
wiley +1 more source
A trace metal cleaning protocol for laboratory equipment to enhance the repeatability of methanotroph cultures. [PDF]
Noguer M+8 more
europepmc +1 more source
This study explores the use of fluorinated copolymers with varying fluorophilic side chain lengths to enhance PFAS affinity. The integration of electrochemical techniques demonstrates enhanced adsorbent regeneration, with molecular dynamics simulations providing insight into the molecular‐level interactions involved.
Anaira Román Santiago+7 more
wiley +1 more source
Progress and determinants of household access to improved drinking water in India using a Water Access Index: insights from the National Family Health Survey towards achieving SDG 6.1. [PDF]
Biswas S, Khanam Z, Alam A, Satpati L.
europepmc +1 more source
To enhance the sustainability of electrochemical separations for resource recovery, a photoelectrochemical ion recovery system is developed that utilizes renewable solar energy. A composite integrating titianium dioxide nanorods and a redox‐copolymer enables spontaneous cation adsorption and light‐activated redox reactions for regeneration, thus ...
Ki‐Hyun Cho+3 more
wiley +1 more source