Results 11 to 18 of about 319 (18)
Sobolev Type Decomposition of Paley-Wiener-Schwartz Space with Application to Sampling Theory [PDF]
2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.We characterize Paley-Wiener-Schwartz space of entire functions as a union of three-parametric linear normed subspaces determined by the type of the entire functions, their polynomial ...
Dryanov, Dimiter
core
Applications of M.G. Krein's Theory of Regular Symmetric Operators to Sampling Theory
The classical Kramer sampling theorem establishes general conditions that allow the reconstruction of functions by mean of orthogonal sampling formulae. One major task in sampling theory is to find concrete, non trivial realizations of this theorem.
Akhiezer N I +14 more
core +1 more source
Accuracy of Algebraic Fourier Reconstruction for Shifts of Several Signals [PDF]
We consider the problem of "algebraic reconstruction" of linear combinations of shifts of several known signals $f_1,\ldots,f_k$ from the Fourier samples.
Batenkov, Dmitry +2 more
core
Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures. [PDF]
Srivastava HM +3 more
europepmc +1 more source
Sampling Trajectories for the Short-Time Fourier Transform. [PDF]
Speckbacher M.
europepmc +1 more source
Analysis of the equivalence relationship between l0-minimization and lp-minimization. [PDF]
Wang C, Peng J.
europepmc +1 more source
Sampling in quasi shift-invariant spaces and Gabor frames generated by ratios of exponential polynomials. [PDF]
Ulanovskii A, Zlotnikov I.
europepmc +1 more source
Review of \u3cem\u3eExplanation and Teleology in Aristotle\u27s Science of Nature\u3c/em\u3e by Mariska Leunissen [PDF]
Goldin, Owen
core +1 more source

