Results 51 to 60 of about 863 (70)
Remarks on Tauberian theorem of exponential type and Fenchel-Legendre transform [PDF]
Kasahara, Yuji, Kosugi, Nobuko
core +2 more sources
Abelian, Tauberian, and Mercerian Theorems for Arithmetic Sums
openaire +1 more source
MULTIDIMENSIONAL ABELIAN AND TAUBERIAN COMPARISON THEOREMS
Wie bekannt wird ein Satz, der aus dem asymptotischen Verhalten eines Quotienten zweier (verallgemeinerter) Funktionen Aufschluß über das Verhalten des Quotienten der entsprechenden Integraltransformationen gibt, als Abelscher Vergleichssatz bezeichnet. Ein zu diesem inverser Satz heißt Tauberscher Vergleichssatz. In der vorliegenden Arbeit sind einige
Yu. N. Drozhzhinov, B I Zav'yalov
openalex +3 more sources
Abelian and Tauberian theorems for Stieltjes transforms of distributions
The present paper discusses some Abelian and Tauberian theorems for the Stieltjes transform of generalized functions. The Stieltjes transform is defined for the multidimensional case.
Bogoljub Stanković
openalex +2 more sources
An Abelian and Tauberian theorem for the stieltjes transform of generalized functions
Using the technique of quasiasymptotics, we describe the asymptotic relations for the Stieltjes transform of generalized functions. The Tauberian condition given here is more general than the assumption by which the Stieltjes orginal is a non-negative measure. Examples are given.
G. Tröger
openalex +2 more sources
Tauberian and Abelian theorems for correlation function of a homogeneous isotropic random field
Let \(\xi(x)\), \(x\in R^ n\), be a homogeneous isotropic random field with \(E\xi(x)=0\), \(E\xi^ 2(x)=1\) and correlation function \[ B_ n(r)=\int^ \infty_ 0Y_ n(r\lambda)d\varphi(\lambda),\quad Y_ n(z)=2^{(n-2)/2}\Gamma(n/2)J_{(n-2)/2}(z)z^{(n-2)/2} \] such that \[ \int^ \infty_ 0z^{n-1}| B_ n(z)| dz=+\infty.
Nikolai Leonenko, Andriy Olenko
openalex +2 more sources
Abelian and Tauberian Theorems on the Bias of the Hill Estimator
The bias of Hill's estimator for the positive extreme value index of a distribution is investigated in relation to the convergence rate in the regular variation property of the tail function of the common distribution of the sample and the corresponding tail quantile function.
Johan Segers
openalex +3 more sources
Some Abelian and Tauberian Theorems
As an immediate application of the results of the preceding Sections we now consider briefly some Examples of what are known as Abelian and Tauberian-type Theorems. These results have found use in a variety of Applied fields.
Richard M. Meyer
openalex +2 more sources
Abelian and Tauberian theorems for a new trigonometric method of summation
The authors introduce a new trigonometric method of summation, denoted by \((R_{2+ \varepsilon})\). They say that a series with partial sums \(s_n\) is \((R_{2+ \varepsilon})\) summable to \(s\) if \[ \lim_{n\to 0} F(h) =s, \] where \[ F(h): ={h^{1 -\varepsilon} \over D(\varepsilon)} \sum^\infty_{k=1} A_k^{-\varepsilon} \left( {\sin(1/2)kh \over(1/2)k ...
G. Das, B. K. Ray
openalex +3 more sources
Tauberian and Abelian Theorems for random fields with strong dependence
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Andriy Olenko
openalex +2 more sources

