Results 11 to 20 of about 12,625 (238)
THE CYCLIC DECOMPOSITION OF THE FACTOR GROUP CF(Dnh,Z)/R(Dnh) WHEN N IS AN ODD NUMBER
For fixed positive integer n³3 ,let Dn be the dihedral group, Dnh= Dn ÏC2 and cf(Dnh,Z) be the abelian group of Z-valued class functions of the group Dnh .The intersection of cf(Dnh,Z) with the group of all generalized characters of Dnh , R(Dnh) is a ...
Hussein Hadi Abbas +1 more
doaj +1 more source
On the Norm of the Abelian p-Group-Residuals
Let G be a group. Dp(G)=⋂H≤GNG(H′(p)) is defined and, the properties of Dp(G) are investigated. It is proved that Dp(G)=P[A], where P=D(P) is the Sylow p-subgroup and A=N(A) is a Hall p′-subgroup of Dp(G), respectively.
Baojun Li, Yu Han, Lü Gong, Tong Jiang
doaj +1 more source
A note on abelian groups [PDF]
Vijayaraghavan and Chowla [2] have proved the following result. If n=2 or has no primitive root, then there exist suitable reduced residue systems rl, r2, , * * , rh and sl, S2 , . * Sh, where h= 4(n), such that risi, r2s2, * , rhsh is also a complete residue system (mod n).
openaire +2 more sources
Complementary dual abelian codes in group algebras of some finite abelian groups [PDF]
Linear complementary dual codes have become an interesting sub-family of linear codes over finite fields since they can be practically applied in various fields such as cryptography and quantum error-correction. Recently, properties of complementary dual
Jitman Somphong
doaj +1 more source
The Abelian Kernel of an Inverse Semigroup
The problem of computing the abelian kernel of a finite semigroup was first solved by Delgado describing an algorithm that decides whether a given element of a finite semigroup S belongs to the abelian kernel.
A. Ballester-Bolinches +1 more
doaj +1 more source
On Abelian Permutation Groups [PDF]
The principal object of this note is to determine the maximal order of Abelian subgroups of the symmetric group sn of degree n.
Bercov, R., Moser, L.
openaire +2 more sources
On Group-Vertex-Magic Labeling of Simple Graphs
Let A be an Abelian group with identity 0. The A-vertex-magic labeling of a graph G is a mapping from the set of vertices in G to A-{0} such that the sum of the labels of every open neighborhood vertex of v is equal, for every vertex v in G.
Muhammad Husnul Khuluq +2 more
doaj +1 more source
Some special classes of n-abelian groups [PDF]
Let n be an integer. A group G is said to be n-abelian if the map phi_n that sends g to g^n is an endomorphism of G. Then (xy)^n=x^ny^n for all x,y in G, from which it follows [x^n,y]=[x,y]^n=[x,y^n]. It is also easy to see that a group G is n-abelian if
Costantino Delizia, Antonio Tortora
doaj
It is studied how rank two pure subgroups of a torsion-free Abelian group of rank three influences its structure and type set. In particular, the criterion for such a subgroup B to be a direct summand of a torsion-free Abelian group of rank three with ...
Najafizadeh Alireza, Woronowicz Mateusz
doaj +1 more source
Non-Abelian Pseudocompact Groups
Here are three recently-established theorems from the literature. (A) (2006) Every non-metrizable compact abelian group K has 2|K| -many proper dense pseudocompact subgroups.
W. W. Comfort, Dieter Remus
doaj +1 more source

