Results 151 to 160 of about 12,614,847 (317)

Prosoluble subgroups of the profinite completion of the fundamental group of compact 3‐manifolds

open access: yesJournal of the London Mathematical Society, Volume 112, Issue 4, October 2025.
Abstract We give a description of finitely generated prosoluble subgroups of the profinite completion of 3‐manifold groups and toral relatively hyperbolic virtually compact special groups.
Lucas C. Lopes, Pavel A. Zalesskii
wiley   +1 more source

The structure of sets with cube‐avoiding sumsets

open access: yesMathematika, Volume 71, Issue 4, October 2025.
Abstract Suppose G$G$ is a finite abelian group, Z0⊂G$Z_0 \subset G$ is not contained in any strict coset in G$G$, and E,F$E,F$ are dense subsets of Gn$G^n$ such that the sumset E+F$E+F$ avoids Z0n$Z_0^n$. We show that E$E$ and F$F$ are almost entirely contained in sets defined by a bounded number of coordinates, that is, sets E′×GIc$E^{\prime } \times
Thomas Karam, Peter Keevash
wiley   +1 more source

Colimits of abelian groups

open access: yesJournal of Algebra, 2015
In this paper we study the colimit N_2(G) of abelian subgroups of a discrete group G. This group is the fundamental group of a subspace B(2,G) of the classifying space BG. We describe N_2(G) for certain groups, and apply our results to study the homotopy type of the space B(2,G). We give a list of classes of groups for which B(2,G) is not an Eilenberg--
openaire   +3 more sources

The growth of Tate–Shafarevich groups of p$p$‐supersingular elliptic curves over anticyclotomic Zp${\mathbb {Z}}_p$‐extensions at inert primes

open access: yesMathematika, Volume 71, Issue 4, October 2025.
Abstract Let E$E$ be an elliptic curve defined over Q${\mathbb {Q}}$, and let K$K$ be an imaginary quadratic field. Consider an odd prime p$p$ at which E$E$ has good supersingular reduction with ap(E)=0$a_p(E)=0$ and which is inert in K$K$. Under the assumption that the signed Selmer groups are cotorsion modules over the corresponding Iwasawa algebra ...
Erman Işik, Antonio Lei
wiley   +1 more source

The conjugacy problem for ascending HNN‐extensions of free groups

open access: yesProceedings of the London Mathematical Society, Volume 131, Issue 4, October 2025.
Abstract We give an algorithm to solve the Conjugacy Problem for ascending HNN‐extensions of free groups. To do this, we give algorithms to solve certain problems on dynamics of free group endomorphisms.
Alan D. Logan
wiley   +1 more source

Home - About - Disclaimer - Privacy