Results 101 to 110 of about 2,666 (143)
AI‐Assisted Workflow for (Scanning) Transmission Electron Microscopy: From Data Analysis Automation to Materials Knowledge Unveiling. Abstract (Scanning) transmission electron microscopy ((S)TEM) has significantly advanced materials science but faces challenges in correlating precise atomic structure information with the functional properties of ...
Marc Botifoll +19 more
wiley +1 more source
Transient Charging of Mixed Ionic‐Electronic Conductors by Anomalous Diffusion
This article explores charge transport in mixed ionic‐electronic conductors (MIECs) through electrochemical impedance spectroscopy and transient current analysis. Focusing on PEDOT:PSS, WO3, and n‐doped PBDF, it uncovers the impact of anomalous diffusion via fractional modeling. The study reveals key correlations that deepen understanding and guide the
Heyi Zhang +9 more
wiley +1 more source
Screen gate‐based transistors are presented, enabling tunable analog sigmoid and Gaussian activations. The SA‐transistor improves MRI classification accuracy, while the GA‐transistor supports precise Gaussian kernel tuning for forecasting. Both functions are implemented in a single device, offering compact, energy‐efficient analog AI processing ...
Junhyung Cho +9 more
wiley +1 more source
Ball‐milling Cu‐based metallic glasses with ceria creates a unique nanostructure where metallic glass particles are wrapped by CeO2 nanoparticles. The intimate integration triggers copper state reorganization during reaction and aging, boosting CO oxidation and COPrOx activity.
Maahin Mirzay‐Shahim +17 more
wiley +1 more source
Giant Berry‐phase‐Driven X‐Ray Beam Translations in Strain‐Engineered Semiconductor Crystals
Due to the Berry‐phase effect, X‐rays propagating in deformed crystals undergo large translations, interesting for X‐ray optics applications. Here, the lattice expansion observed upon H irradiation of dilute‐nitride semiconductors is exploited to engineer the deformation landscape of selectively hydrogenated GaAsN epilayers.
Marco Felici +9 more
wiley +1 more source
COFs on MOFs: Layer‐by‐Layer Synthesis of MOF@COF Nanoparticles with Synergistic Adsorption
A layer‐by‐layer strategy enables the growth of crystalline covalent organic framework (COF) shells on metal–organic framework nanoparticles, creating core–shell structures with tunable porosity. Ordered interstitial mesopores are formed during shell growth, which are connected with the COF's intrinsic micropores, thereby enhancing water sorption. This
Ana Guillem‐Navajas +11 more
wiley +1 more source
Spectral Tuning of Hyperbolic Shear Polaritons in Monoclinic Gallium Oxide via Isotopic Substitution
Spectral tuning of highly directional hyperbolic shear polaritons is realized via isotopic substitution of 16O to 18O in monoclinic β$\beta$‐phase gallium oxide. A red‐shift of almost 40 cm−1 is experimentally demonstrated with near‐field imaging, corroborated by the permittivity change extracted from far‐field experiments and density functional theory.
Giulia Carini +28 more
wiley +1 more source
Metamaterial Antennas Enhance MRI of the Eye and Occipital Brain
A radiofrequency antenna platform comprising planar and bend configurations is developed, incorporating structurally integrated epsilon‐negative metamaterial unit cells to enhance MRI. These antennas enable high‐resolution in vivo human MRI of the eye, orbit, and occipital brain. Comprehensive validation, including simulations, phantom experiments, SAR,
Nandita Saha +14 more
wiley +1 more source
Impact of Anode to Cathode Crossover in Lithium‐metal Batteries With High‐Nickel Cathodes
Anode‐to‐cathode chemical crossover is identified as a critical degradation mechanism in lithium‐metal batteries. Full‐cell experiments with high‐Ni layered oxide cathodes and localized high‐concentration electrolytes reveal accelerated cathode impedance growth and CEI thickening driven by lithium‐metal anodes. The findings underscore the importance of
Zezhou Guo +2 more
wiley +1 more source
Navigating Ternary Doping in Li‐ion Cathodes With Closed‐Loop Multi‐Objective Bayesian Optimization
The search for advanced battery materials is pushing us into highly complex composition spaces. Here, a space with about 14 million unique combinations is efficiently explored using high‐throughput experimentation guided by Bayesian optimization with a deep kernel trained on both the Materials Project database and our data.
Nooshin Zeinali Galabi +6 more
wiley +1 more source

