Results 21 to 30 of about 278 (68)

Approximation properties of Cesàro means of Vilenkin-Fourier series [PDF]

open access: yes, 2022
This PhD thesis focuses on the investigation of approximation properties of Cesàro means of the Vilenkin-Fourier series. In particular, we obtain some new inequalities related to the rate of Lp approximation by Cesàro means of the Vilenkin-Fourier series
Tepnadze, Tsisino
core  

Summability factors between the absolute Cesàro methods

open access: yesSakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2018
If Σε_{n}x_{n} is summable by the method Y whenever Σx_{n} is summable by the method X, then we say that the factor ε=(ε_{n}) is of type (X,Y) and denote by (X,Y).
G. Canan Hazar Güleç
doaj   +1 more source

A Note on Generalized Indexed Norlund Summability Factor of an Infinite Series

open access: yesInternational Journal of Analysis and Applications, 2019
In the present article, we have established a result on generalized indexed absolute Norlund summability factor by generalizing results of Mishra and Srivastava on indexed absolute Cesaro summabilty factors and Padhy et.al.
B. P. Padhy, P. Tripathy, B. B. Mishra
doaj   +2 more sources

Some further extensions of absolute Cesàro summability for double series [PDF]

open access: yes, 2013
In a recent paper [SavaAY and Rhoades in Appl. Math. Lett. 22:1462-1466, 2009], the authors extended the result of Flett [Proc. Lond. Math. Soc. 7:113-141, 1957] to double summability.
Ekrem Savaş, Hamdullah Şevli
core   +1 more source

Characterizations of summability methods derived by q-Cesàro matrix

open access: yesDera Natung Government College Research Journal
The present study  mainly aims to introduce the absolute summability method  derived  from the transformation matrix  obtained by the -Cesàro matrix   and   to establish  the  necessary and sufficient conditions for and   where   In addition, by ...
Fadime Gökçe
doaj   +1 more source

The binomial sequence spaces of nonabsolute type [PDF]

open access: yes, 2016
In this paper, we introduce the binomial sequence spaces b 0 r , s $b^{r,s}_{0}$ and b c r , s $b^{r,s}_{c}$ of nonabsolute type which include the spaces c 0 $c_{0}$ and c, respectively.
A Wilansky   +19 more
core   +5 more sources

On the absolute Cesàro summability factors

open access: yesJournal of Numerical Analysis and Approximation Theory, 1991
Not available.
Hüseyin Bor
doaj   +2 more sources

Impact of Artificial Intelligence for Detection of Precancerous Colonic Lesions in a Fecal Immunochemical Blood Test‐Based Organized Screening Program in Italy: A Randomized Control Trial

open access: yesUnited European Gastroenterology Journal, Volume 14, Issue 1, February 2026.
ABSTRACT Background The fecal immunochemical test (FIT) is widely implemented as a first‐line tool in organized colorectal cancer (CRC) screening programs, including Italy. Following a positive FIT, colonoscopy is recommended. Computer‐aided detection (CADe) systems have the potential to enhance adenoma detection, particularly in FIT‐positive ...
Cristiano Spada   +21 more
wiley   +1 more source

Sorelmélet és végtelen sorokkal kapcsolatos egyenlőtlenségek = Theory of series and inequalities concerning infinite series [PDF]

open access: yes, 2007
2003 óta 29 dolgozatom jelent meg (lásd. Math.Rev. ) és 11 további már közlésre elfogadott. Mind hazai és külföldi ismert folyóirat. Ebben az időszakban számos új osztályát definiáltam számsorozatoknak és ezekre sikerült több klasszikus eredmenyt ...
Leindler, László
core  

On multiplicative recurrence along linear patterns

open access: yesJournal of the London Mathematical Society, Volume 112, Issue 3, September 2025.
Abstract Donoso, Le, Moreira, and Sun (J. Anal. Math. 149 (2023), 719–761) study sets of recurrence for actions of the multiplicative semigroup (N,×)$(\mathbb {N}, \times)$ and provide some sufficient conditions for sets of the form S={(an+b)/(cn+d):n∈N}$S=\lbrace (an+b)/(cn+d) \colon n \in \mathbb {N}\rbrace $ to be sets of recurrence for such actions.
Dimitrios Charamaras   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy