Results 201 to 210 of about 190,176 (265)

Delta Opioid Receptors within the Cortico‐Thalamic Circuitry Underlie Hyperactivity Induced by High‐Dose Morphine

open access: yesAdvanced Science, EarlyView.
Morphine activates the excitatory cingulate cortex–intermediate rostrocaudal division of zona incerta (Cg‐ZIm) pathway to drive hyperlocomotion in mice. Inhibiting the Cg‐ZIm pathway attenuates both acute and chronic morphine‐induced hyperlocomotion, while its activation mimics morphine's motor effects.
Chun‐Yue Li   +13 more
wiley   +1 more source

Giant mesenteric lipoma as an atypical cause of acute abdomen in adult patients, uncommon case report and literature review

open access: diamond
José Vicente Fonseca Barragán   +9 more
openalex   +2 more sources

Hyperandrogenemia Induces Trophoblast Ferroptosis and Early Pregnancy Loss in Patients With PCOS via CMA‐Dependent FTH1 Degradation

open access: yesAdvanced Science, EarlyView.
In PCOS patients with hyperandrogenemia, decreased ferritin heavy chain 1 (FTH1) causes Fe2⁺ overload and ferroptosis in trophoblasts. Androgens induce FTH1 protein degradation via AR‐LAMP2A‐mediated chaperone‐mediated autophagy pathway, leading to placental development disruption and early pregnancy loss. Metformin mitigates androgen‐induced placental
Hanjing Zhou   +10 more
wiley   +1 more source

Spontaneous Terminal Ileum GIST Perforation Causing an Acute Abdomen in an Elderly Patient-A Rare Case. [PDF]

open access: yesDiagnostics (Basel)
Zivanovic M   +9 more
europepmc   +1 more source

Modifying Glucose Metabolism Reverses Memory Defects of Alzheimer's Disease Model at Late Stages

open access: yesAdvanced Science, EarlyView.
Using spatial transcriptomics, we show that ferul enanthate (SL‐ZF‐01) reverses episodic‐like memory deficits in aged, but not young, Alzheimer’s disease (AD) mice. SL restores glucose metabolism and Glucose Transporter 1/3 expression via an ‘Aging‐AD‐Rescue’ pattern, rescuing deficits seen in aged AD mice.
Fang Liu   +14 more
wiley   +1 more source

Vitamin D Regulates Olfactory Function via Dual Transcriptional and mTOR‐Dependent Translational Control of Synaptic Proteins

open access: yesAdvanced Science, EarlyView.
Vitamin D (VitD) modulates olfactory function by remodeling dendrodendritic synapses in tufted cells through vitamin D receptor‐dependent transcriptional and translational mechanisms. VitD regulates synaptic protein translation partially via mTOR signaling.
Pengcheng Ren   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy