Results 191 to 200 of about 1,012,052 (375)

Machine Learning‐Enabled Polymer Discovery for Enhanced Pulmonary siRNA Delivery

open access: yesAdvanced Functional Materials, EarlyView.
This study provides an efficient approach to train a machine learning model by merging heterogeneous literature data to predict suitable polymers for siRNA delivery. Without the need for extensive laboratory synthesis, the machine learning enabled a virtual screening and successfully predicted a polymer that is validated for effective gene silencing in
Felix Sieber‐Schäfer   +10 more
wiley   +1 more source

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Transmembrane Activation of Catalysis and Protein Refolding in Synthetic Cells by Enzymes and Nanozymes

open access: yesAdvanced Functional Materials, EarlyView.
Synthetic cells are engineered herein to respond to an external chemical messenger by the activation of intracellular catalysis. The chemical messenger molecules are catalytically generated by an extracellular enzyme or a mineral surface, whereas the intracellular catalysis emerges via direct enzyme activation or via protein refolding.
Dante G. Andersen   +5 more
wiley   +1 more source

Temperature‐Enhanced Supramolecular Polymer Adhesion Provided by Concurrent Utilization of Calix[4]Pyrrole and Crown Ether Molecular Recognition

open access: yesAdvanced Functional Materials, EarlyView.
Simultaneous utilization of calix[4]pyrrole‐ and crown ether‐based molecular recognition allows the construction of a high molecular weight alternating supramolecular polymer. This heat processible polymer can be used as a durable and reusable adhesive on glass and steel with temperature‐enhanced adhesion strength without the need for a solvent ...
Deniz Memis, Abdullah Aydogan
wiley   +1 more source

Ultrasoft Iontronics: Stretchable Diodes Enabled by Ionically Conductive Bottlebrush Elastomers

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a solvent‐free, ultrasoft, and stretchable ionic diode based on oppositely charged bottlebrush elastomers (BBEs). The BBE diode exhibits an ultralow Young's modulus (<23 kPa), a high rectification ratio of 46, and stretchability over 400%.
Xia Wu   +6 more
wiley   +1 more source

Effect of dibutyryl cyclic AMP and glucagon on liver adenine nucleotide metablism in rats with acute hepatic failure.

open access: bronze, 1991
Yukio MATSUO   +6 more
openalex   +2 more sources

Treatment of Surgically Induced Acute Liver Failure with Transplantation of Highly Differentiated Immortalized Human Hepatocytes [PDF]

open access: bronze, 2000
Naoya Kobayashi   +10 more
openalex   +1 more source

Bioinspired Shape Reconfigurable, Printable, and Conductive “E‐Skin” Patch with Robust Antibacterial Properties for Human Health Sensing

open access: yesAdvanced Functional Materials, EarlyView.
In this article, Hojin Kim, Sayan Deb Dutta, and co‐workers report a shape‐reconfigurable, 3D printable, and highly adhesive slime‐like ‘electronic skin’ or ‘E‐skin’ patch for human health sensing and tissue engineering applications. The dual reinforcement of hydrogel patch with carbon nanotubes (CNTs) and cellulose nanocrystals (CNCs) improve the ...
Hojin Kim   +6 more
wiley   +1 more source

Acute liver failure as initial presentation in a Chinese patient with Budd-Chiari syndrome due to protein C deficiency: A case report and literature review

open access: yesHeliyon
Acute liver failure is an uncommon presentation in the clinic. Common causes for acute liver failure include viral hepatitis and drug-related hepatotoxicity. However, acute liver failure due to Budd-Chiari syndrome is rare.
Wanling Xu   +6 more
doaj  

Home - About - Disclaimer - Privacy