Results 211 to 220 of about 1,012,052 (375)

Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes

open access: yesAdvanced Functional Materials, EarlyView.
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth   +2 more
wiley   +1 more source

Acute Liver Failure: Is Acetaminophen the Only Culprit? [PDF]

open access: yesCureus
McLaughlin SD   +4 more
europepmc   +1 more source

Bio‐Responsive Hydrogel for Targeted on‐Demand Release of a Phage Cocktail for Treatment of Pseudomonas aeruginosa Infection

open access: yesAdvanced Functional Materials, EarlyView.
This study presents an injectable hydrogel that responds to Pseudomonas aeruginosa infection by releasing a dual‐phage cocktail on demand. The system degrades selectively in infected wounds, enhances phage localization and stability, and shows potent antibiofilm activity and biocompatibility in an ex vivo human skin model—offering a promising strategy ...
Siyuan Tao   +9 more
wiley   +1 more source

From Exciton Dynamics to Cell Fate: A Carbon Dot Based NIR Photocatalytic Platform for Pyroptosis via Self‐Trapped Excitons

open access: yesAdvanced Functional Materials, EarlyView.
A facile and effective method to boost NIR light induced photocatalysis based on nontoxic NIR emissive carbon dots (nir‐CDs) via Self‐trapped excitons, showing that both O2− • and •OH can be generated from nir‐CDs under NIR laser irradiation. Abstract Near‐infrared (NIR) light‐triggered photocatalytic therapy remains a critical challenge in efficient ...
Qingcheng Wang   +8 more
wiley   +1 more source

Acute Liver Failure During Early Pregnancy-Case Report and Review of Literature. [PDF]

open access: yesJ Clin Med
Paulina B   +6 more
europepmc   +1 more source

Engineering Highly Cellularized Living Materials via Mechanical Agitation

open access: yesAdvanced Functional Materials, EarlyView.
A mechanical agitation strategy is developed to engineer highly cellularized living materials, achieving cell densities of up to 1 billion cells per milliliter. By precisely tuning properties such as stiffness and toughness in blood clots, the approach is validated in both in vitro and in vivo studies.
Aram Bahmani   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy