Results 31 to 40 of about 93 (44)

A solution to the Erd\H{o}s-S\'ark\"ozy-S\'os problem on asymptotic Sidon bases of order 3

open access: yes, 2023
A set $S\subset \mathbb{N}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leq s_2$) are distinct. A set $S\subset \mathbb{N}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum ...
Pilatte, Cédric
core  

Maximally additively reducible subsets of the integers

open access: yes, 2019
Let $A, B \subseteq \mathbb{N}$ be two finite sets of natural numbers. We say that $B$ is an additive divisor for $A$ if there exists some $C \subseteq \mathbb{N}$ with $A = B+C$.
Gross, Gal
core  

Additive Combinatorics: A Menu of Research Problems

open access: yes, 2017
This text contains over three hundred specific open questions on various topics in additive combinatorics, each placed in context by reviewing all relevant results. While the primary purpose is to provide an ample supply of problems for student research,
Bajnok, Bela
core  

Structures linéaires dans les ensembles à faible densité [PDF]

open access: yes, 2014
Réalisé en cotutelle avec l'Université Paris-Diderot.Nous présentons trois résultats en combinatoire additive, un domaine récent à la croisée de la combinatoire, l'analyse harmonique et la théorie analytique des nombres.
Henriot, Kevin
core   +1 more source

Improved stability for the size and structure of sumsets

open access: yes
Let $A \subset \mathbb{Z}^d$ be a finite set. It is known that the sumset $NA$ has predictable size ($\vert NA\vert = P_A(N)$ for some $P_A(X) \in \mathbb{Q}[X]$) and structure (all of the lattice points in some finite cone other than all of the lattice ...
Granville, Andrew   +2 more
core  

On the few products, many sums problem [PDF]

open access: yes, 2019
Brendan Murphy   +3 more
core   +2 more sources

Finding product sets in some classes of amenable groups

open access: yes
In 2022, using methods from ergodic theory, Kra, Moreira, Richter, and Robertson resolved a longstanding conjecture of Erd\H{o}s about sumsets in large subsets of the natural numbers.
Charamaras, Dimitrios   +1 more
core  

Home - About - Disclaimer - Privacy