Results 1 to 10 of about 14,798 (256)
Adversarial attacks against supervised machine learning based network intrusion detection systems. [PDF]
Adversarial machine learning is a recent area of study that explores both adversarial attack strategy and detection systems of adversarial attacks, which are inputs specially crafted to outwit the classification of detection systems or disrupt the ...
Alshahrani E +3 more
europepmc +3 more sources
A Study of Adversarial Attacks and Detection on Deep Learning-Based Plant Disease Identification
Transfer learning using pre-trained deep neural networks (DNNs) has been widely used for plant disease identification recently. However, pre-trained DNNs are susceptible to adversarial attacks which generate adversarial samples causing DNN models to make
Zhirui Luo, Qingqing Li, Jun Zheng
doaj +1 more source
Black Box Adversarial Attack Starting Point Promotion Method Based on Mobility Between Models [PDF]
In order to efficiently find the adversarial samples under the decision-based black box attacks, a method using the mobility between models is proposed to enhance the adversarial starting point. The mobility is used to circularly superimpose interference
CHEN Xiaonan, HU Jianmin, ZHANG Benjun, CHEN Ailing
doaj +1 more source
Aerial Image Semantic segmentation based on convolution neural networks (CNNs) has made significant process in recent years. Nevertheless, their vulnerability to adversarial example attacks could not be neglected.
Zhen Wang +3 more
doaj +1 more source
Adversarial attacks and defenses in deep learning
The adversarial example is a modified image that is added imperceptible perturbations, which can make deep neural networks decide wrongly. The adversarial examples seriously threaten the availability of the system and bring great security risks to the ...
LIU Ximeng +2 more
doaj +3 more sources
TextFirewall: Omni-Defending Against Adversarial Texts in Sentiment Classification
Sentiment classification has been broadly applied in real life, such as product recommendation and opinion-oriented analysis. Unfortunately, the widely employed sentiment classification systems based on deep neural networks (DNNs) are susceptible to ...
Wenqi Wang +3 more
doaj +1 more source
GANBA: Generative Adversarial Network for Biometric Anti-Spoofing
Automatic speaker verification (ASV) is a voice biometric technology whose security might be compromised by spoofing attacks. To increase the robustness against spoofing attacks, presentation attack detection (PAD) or anti-spoofing systems for detecting ...
Alejandro Gomez-Alanis +2 more
doaj +1 more source
Multi-Class Triplet Loss With Gaussian Noise for Adversarial Robustness
Deep Neural Networks (DNNs) classifiers performance degrades under adversarial attacks, such attacks are indistinguishably perturbed relative to the original data.
Benjamin Appiah +4 more
doaj +1 more source
Textual Adversarial Training Method Based on Distributed Perturbation [PDF]
Text adversarial defense aims to enhance the resilience of neural network models against different adversarial attacks. The current text confrontation defense methods are usually only effective against certain specific confrontation attacks and have ...
Zhidong SHEN, Hengxian YUE
doaj +1 more source
The internet-of-Vehicle (IoV) can facilitate seamless connectivity between connected vehicles (CV), autonomous vehicles (AV), and other IoV entities. Intrusion Detection Systems (IDSs) for IoV networks can rely on machine learning (ML) to protect the in ...
Ibrahim Aliyu +4 more
doaj +1 more source

