Results 101 to 110 of about 94,861 (274)
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source
This article reviews the current state of bioinspired soft robotics. The article discusses soft actuators, soft sensors, materials selection, and control methods used in bioinspired soft robotics. It also highlights the challenges and future prospects of this field.
Abhirup Sarker +2 more
wiley +1 more source
Synthetic Aperture Radar (SAR) target detection models are highly vulnerable to adversarial attacks, which significantly reduce detection performance and robustness.
Jiahao Cui +4 more
doaj +1 more source
Interpretable BoW Networks for Adversarial Example Detection
The standard approach to providing interpretability to deep convolutional neural networks (CNNs) consists of visualizing either their feature maps, or the image regions that contribute the most to the prediction. In this paper, we introduce an alternative strategy to interpret the results of a CNN.
Nakka, Krishna Kanth, Salzmann, Mathieu
openaire +2 more sources
Large Language Model‐Based Chatbots in Higher Education
The use of large language models (LLMs) in higher education can facilitate personalized learning experiences, advance asynchronized learning, and support instructors, students, and researchers across diverse fields. The development of regulations and guidelines that address ethical and legal issues is essential to ensure safe and responsible adaptation
Defne Yigci +4 more
wiley +1 more source
Predicting Performance of Hall Effect Ion Source Using Machine Learning
This study introduces HallNN, a machine learning tool for predicting Hall effect ion source performance using a neural network ensemble trained on data generated from numerical simulations. HallNN provides faster and more accurate predictions than numerical methods and traditional scaling laws, making it valuable for designing and optimizing Hall ...
Jaehong Park +8 more
wiley +1 more source
Text classifiers are Artificial Intelligence (AI) models used to classify new documents or text vectors into predefined classes. They are typically built using supervised learning algorithms and labelled datasets.
Harsha Moraliyage +5 more
doaj +1 more source
IAR‐Net: Tabular Deep Learning Model for Interventionalist's Action Recognition
This study presents IAR‐Net, a deep‐learning framework for catheterization action recognition. To ensure optimality, this study quantifies interoperator similarities and differences using statistical tests, evaluates the distribution fidelity of synthetic data produced by six generative models, and benchmarks multiple deep‐learning models.
Toluwanimi Akinyemi +7 more
wiley +1 more source
Detecting Adversarial Examples in Convolutional Neural Networks
The great success of convolutional neural networks has caused a massive spread of the use of such models in a large variety of Computer Vision applications. However, these models are vulnerable to certain inputs, the adversarial examples, which although are not easily perceived by humans, they can lead a neural network to produce faulty results.
Pertigkiozoglou, Stefanos +1 more
openaire +2 more sources
A loss‐based ensemble generative adversarial network (GAN) framework is proposed to address mode collapse in sperm morphology classification. By integrating spatial augmentation and multiple GAN models, the study enhances synthetic data quality. The Shifted Window Transformer achieves 95.37% accuracy on the HuSHeM dataset, outperforming previous ...
Berke Cansiz +2 more
wiley +1 more source

