Results 101 to 110 of about 5,739,313 (302)
This study proposes a method to increase the value of solar power in balancing markets by managing prediction errors. The approach models prediction uncertainties and quantifies reserve requirements based on a probabilistic model. This enables the more reliable participation of photovoltaic plants in balancing markets across multiple sites, especially ...
Jindan Cui +3 more
wiley +1 more source
Generative Artificial Intelligence Shaping the Future of Agri‐Food Innovation
Emerging use cases of generative artificial intelligence in agri‐food innovation. ABSTRACT The recent surge in generative artificial intelligence (AI), typified by models such as GPT, diffusion models, and large vision‐language architectures, has begun to influence the agri‐food sector.
Jun‐Li Xu +2 more
wiley +1 more source
Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only how the worst perturbed examples (i.e., adversarial examples) could affect the model output.
Zhang, Shufei +3 more
openaire +2 more sources
Domain‐Aware Implicit Network for Arbitrary‐Scale Remote Sensing Image Super‐Resolution
Although existing arbitrary‐scale image super‐resolution methods are flexible to reconstruct images with arbitrary scales, the characteristic of training distribution is neglected that there exists domain shift between samples of various scales. In this work, a Domain‐Aware Implicit Network (DAIN) is proposed to handle it from the perspective of domain
Xiaoxuan Ren +6 more
wiley +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Adversarial Incremental Learning
Although deep learning performs really well in a wide variety of tasks, it still suffers from catastrophic forgetting -- the tendency of neural networks to forget previously learned information upon learning new tasks where previous data is not available.
openaire +2 more sources
Exosomes are emerging as powerful biomarkers for disease diagnosis and monitoring. This review highlights the integration of surface‐enhanced Raman spectroscopy with artificial intelligence to enhance molecular fingerprinting of exosomes. Machine learning and deep learning techniques improve spectral interpretation, enabling accurate classification of ...
Munevver Akdeniz +2 more
wiley +1 more source
POSES: Patch Optimization Strategies for Efficiency and Stealthiness Using eXplainable AI
Adversarial examples, which are carefully crafted inputs designed to deceive deep learning models, create significant challenges in Artificial Intelligence.
Han-Ju Lee +3 more
doaj +1 more source
A novel convolutional neural network architecture enables rapid, unsupervised analysis of IR spectroscopic data from DRIFTS and IRRAS. By combining synthetic data generation with parallel convolutional layers and advanced regularization, the model accurately resolves spectral features of adsorbed CO, offering real‐time insights into ceria surface ...
Mehrdad Jalali +5 more
wiley +1 more source
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian +12 more
wiley +1 more source

