Results 121 to 130 of about 5,739,313 (302)

A Review on Recent Trends of Bioinspired Soft Robotics: Actuators, Control Methods, Materials Selection, Sensors, Challenges, and Future Prospects

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
This article reviews the current state of bioinspired soft robotics. The article discusses soft actuators, soft sensors, materials selection, and control methods used in bioinspired soft robotics. It also highlights the challenges and future prospects of this field.
Abhirup Sarker   +2 more
wiley   +1 more source

Evaluating Realistic Adversarial Attacks against Machine Learning Models for Windows PE Malware Detection

open access: yesFuture Internet
During the last decade, the cybersecurity literature has conferred a high-level role to machine learning as a powerful security paradigm to recognise malicious software in modern anti-malware systems.
Muhammad Imran   +2 more
doaj   +1 more source

Large Language Model‐Based Chatbots in Higher Education

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
The use of large language models (LLMs) in higher education can facilitate personalized learning experiences, advance asynchronized learning, and support instructors, students, and researchers across diverse fields. The development of regulations and guidelines that address ethical and legal issues is essential to ensure safe and responsible adaptation
Defne Yigci   +4 more
wiley   +1 more source

Predicting Performance of Hall Effect Ion Source Using Machine Learning

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
This study introduces HallNN, a machine learning tool for predicting Hall effect ion source performance using a neural network ensemble trained on data generated from numerical simulations. HallNN provides faster and more accurate predictions than numerical methods and traditional scaling laws, making it valuable for designing and optimizing Hall ...
Jaehong Park   +8 more
wiley   +1 more source

IAR‐Net: Tabular Deep Learning Model for Interventionalist's Action Recognition

open access: yesAdvanced Intelligent Systems, EarlyView.
This study presents IAR‐Net, a deep‐learning framework for catheterization action recognition. To ensure optimality, this study quantifies interoperator similarities and differences using statistical tests, evaluates the distribution fidelity of synthetic data produced by six generative models, and benchmarks multiple deep‐learning models.
Toluwanimi Akinyemi   +7 more
wiley   +1 more source

Loss‐Based Ensemble Generative Adversarial Network Model for Enhancing the Sperm Morphology Classification

open access: yesAdvanced Intelligent Systems, EarlyView.
A loss‐based ensemble generative adversarial network (GAN) framework is proposed to address mode collapse in sperm morphology classification. By integrating spatial augmentation and multiple GAN models, the study enhances synthetic data quality. The Shifted Window Transformer achieves 95.37% accuracy on the HuSHeM dataset, outperforming previous ...
Berke Cansiz   +2 more
wiley   +1 more source

How to beat a Bayesian adversary

open access: yesEuropean Journal of Applied Mathematics
Deep neural networks and other modern machine learning models are often susceptible to adversarial attacks. Indeed, an adversary may often be able to change a model’s prediction through a small, directed perturbation of the model’s input – an issue in ...
Zihan Ding   +3 more
doaj   +1 more source

Roadmap on Artificial Intelligence‐Augmented Additive Manufacturing

open access: yesAdvanced Intelligent Systems, EarlyView.
This Roadmap outlines the transformative role of artificial intelligence‐augmented additive manufacturing, highlighting advances in design, monitoring, and product development. By integrating tools such as generative design, computer vision, digital twins, and closed‐loop control, it presents pathways toward smart, scalable, and autonomous additive ...
Ali Zolfagharian   +37 more
wiley   +1 more source

Toward Enhanced Adversarial Robustness Generalization in Object Detection: Feature Disentangled Domain Adaptation for Adversarial Training

open access: yesIEEE Access
Recent research has shown that deep learning models are likely to make incorrect predictions even when exposed to minor perturbations. To address this, training models on adversarial examples, particularly through Adversarial Training (AT), has gained ...
Yoojin Jung, Byung Cheol Song
doaj   +1 more source

BMPCQA: Bioinspired Metaverse Point Cloud Quality Assessment Based on Large Multimodal Models

open access: yesAdvanced Intelligent Systems, EarlyView.
This study presents a bioinspired metaverse point cloud quality assessment metric, which simulates the human visual evaluation process to perform the point cloud quality assessment task. It first extracts rendering projection video features, normal image features, and point cloud patch features, which are then fed into a large multimodal model to ...
Huiyu Duan   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy