Results 111 to 120 of about 1,185,392 (332)
Artificial Intelligence for Bone: Theory, Methods, and Applications
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan +3 more
wiley +1 more source
The Adversarial Machine Learning Conundrum: Can the Insecurity of ML Become the Achilles' Heel of Cognitive Networks? [PDF]
Muhammad Usama +3 more
openalex +1 more source
Deep Learning‐Assisted Coherent Raman Scattering Microscopy
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu +4 more
wiley +1 more source
Adversarial Security Attacks and Perturbations on Machine Learning and Deep Learning Methods [PDF]
Arif Siddiqi
openalex +1 more source
Adversarial Machine Learning: Perspectives from Adversarial Risk Analysis
Adversarial Machine Learning (AML) is emerging as a major eld aimed at the protection of automated ML systems against security threats. The majority of work in this area has built upon a game-theoretic framework by modelling a conict between an attacker and a defender.
Insua, David Rios +3 more
openaire +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source
Adversarial Machine Learning Attacks and Defense Methods in the Cyber\n Security Domain [PDF]
Ihai Rosenberg +3 more
openalex +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
A Survey on Adversarial Attacks for Malware Analysis
Machine learning-based malware analysis approaches are widely researched and deployed in critical infrastructures for detecting and classifying evasive and growing malware threats.
Kshitiz Aryal +4 more
doaj +1 more source
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source

