Results 121 to 130 of about 1,185,392 (332)
Machine Learning Integrity and Privacy in Adversarial Environments [PDF]
Alina Oprea
openalex +1 more source
This article reviews the current state of bioinspired soft robotics. The article discusses soft actuators, soft sensors, materials selection, and control methods used in bioinspired soft robotics. It also highlights the challenges and future prospects of this field.
Abhirup Sarker +2 more
wiley +1 more source
Enhancing quantum adversarial robustness by randomized encodings
The interplay between quantum physics and machine learning gives rise to the emergent frontier of quantum machine learning, where advanced quantum learning models may outperform their classical counterparts in solving certain challenging problems ...
Weiyuan Gong +3 more
doaj +1 more source
Large Language Model‐Based Chatbots in Higher Education
The use of large language models (LLMs) in higher education can facilitate personalized learning experiences, advance asynchronized learning, and support instructors, students, and researchers across diverse fields. The development of regulations and guidelines that address ethical and legal issues is essential to ensure safe and responsible adaptation
Defne Yigci +4 more
wiley +1 more source
Predicting Performance of Hall Effect Ion Source Using Machine Learning
This study introduces HallNN, a machine learning tool for predicting Hall effect ion source performance using a neural network ensemble trained on data generated from numerical simulations. HallNN provides faster and more accurate predictions than numerical methods and traditional scaling laws, making it valuable for designing and optimizing Hall ...
Jaehong Park +8 more
wiley +1 more source
Multi-Stage Adversarial Defense for Online DDoS Attack Detection System in IoT
Machine learning-based Distributed Denial of Service (DDoS) attack detection systems have proven effective in detecting and preventing DDoD attacks in Internet of Things (IoT) systems.
Yonas Kibret Beshah +2 more
doaj +1 more source
IAR‐Net: Tabular Deep Learning Model for Interventionalist's Action Recognition
This study presents IAR‐Net, a deep‐learning framework for catheterization action recognition. To ensure optimality, this study quantifies interoperator similarities and differences using statistical tests, evaluates the distribution fidelity of synthetic data produced by six generative models, and benchmarks multiple deep‐learning models.
Toluwanimi Akinyemi +7 more
wiley +1 more source

