Results 101 to 110 of about 215,342 (268)
Developing Hessian–Free Second–Order Adversarial Examples for Adversarial Training
Recent studies show that deep neural networks (DNNs) are extremely vulnerable to elaborately designed adversarial examples. Adversarial training, which uses adversarial examples as training data, has been proven to be one of the most effective methods of
Qian Yaguan +5 more
doaj +1 more source
Physical adversarial attacks face significant challenges in achieving transferability across different object detection models, especially in real-world conditions.
Adonisz Dimitriu +2 more
doaj +1 more source
A novel convolutional neural network architecture enables rapid, unsupervised analysis of IR spectroscopic data from DRIFTS and IRRAS. By combining synthetic data generation with parallel convolutional layers and advanced regularization, the model accurately resolves spectral features of adsorbed CO, offering real‐time insights into ceria surface ...
Mehrdad Jalali +5 more
wiley +1 more source
Defense Architecture for Adversarial Examples of Ensemble Model Traffic Based on FeatureDifference Selection [PDF]
Currently,anomaly traffic detection models that leverage deep learning technologies are increasingly vulnerable to adversarial example attacks.Adversarial training has emerged as a potent defense mechanism against these adversarial attacks.By ...
HE Yuankang, MA Hailong, HU Tao, JIANG Yiming
doaj +1 more source
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian +12 more
wiley +1 more source
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla +4 more
wiley +1 more source
Artificial Intelligence for Bone: Theory, Methods, and Applications
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan +3 more
wiley +1 more source
Relieve Adversarial Attacks Based on Multimodal Training [PDF]
This paper explores the role of multimodal training in mitigating the problems caused by adversarial attacks, building on the foundations of deep learning.
Lai Hongjie
doaj +1 more source
Deep Learning‐Assisted Coherent Raman Scattering Microscopy
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu +4 more
wiley +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source

