Results 141 to 150 of about 4,273,508 (315)

PYCR1 inhibition in bone marrow stromal cells enhances bortezomib sensitivity in multiple myeloma cells by altering their metabolism

open access: yesMolecular Oncology, EarlyView.
This study investigated how PYCR1 inhibition in bone marrow stromal cells (BMSCs) indirectly affects multiple myeloma (MM) cell metabolism and viability. Culturing MM cells in conditioned medium from PYCR1‐silenced BMSCs impaired oxidative phosphorylation and increased sensitivity to bortezomib.
Inge Oudaert   +13 more
wiley   +1 more source

Inhibition of CDK9 enhances AML cell death induced by combined venetoclax and azacitidine

open access: yesMolecular Oncology, EarlyView.
The CDK9 inhibitor AZD4573 downregulates c‐MYC and MCL‐1 to induce death of cytarabine (AraC)‐resistant AML cells. This enhances VEN + AZA‐induced cell death significantly more than any combination of two of the three drugs in AraC‐resistant AML cells.
Shuangshuang Wu   +18 more
wiley   +1 more source

Depressive Symptoms and One Year Mortality among Elderly Patients Discharged from a Rehabilitation Ward after Orthopaedic Surgery of the Lower Limbs

open access: yesBehavioural Neurology, 2010
Fabio Guerini   +4 more
doaj   +1 more source

Prevalence of sarcopenia under different diagnostic criteria and the changes in muscle mass, muscle strength, and physical function with age in Chinese old adults

open access: gold, 2022
Mengyu Cao   +11 more
openalex   +1 more source

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

New insights into molecular changes in skeletal muscle aging and disease: Differential alternative splicing and senescence

open access: hybrid, 2021
Elizaveta M. Solovyeva   +13 more
openalex   +1 more source

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy