Results 131 to 140 of about 527,157 (233)
On the section conjecture over fields of finite type
Abstract Assume that the section conjecture holds over number fields. We prove then that it holds for a broad class of curves defined over finitely generated extensions of Q$\mathbb {Q}$. This class contains every projective, hyperelliptic curve, every hyperbolic, affine curve of genus ≤2$\le 2$, and a basis of open subsets of any curve.
Giulio Bresciani
wiley +1 more source
Abstract Background Huntington's disease (HD) is characterized by early, selective, progressive vulnerability of striatal medium spiny neurons (MSNs). Proenkephalin (PENK), a precursor of opioid peptides abundantly expressed in MSNs, is a promising biomarker of striatal integrity, but region‐specific associations and its potential for early‐stage ...
Mena Farag +14 more
wiley +1 more source
We develop a full randomization of the classical hyper‐logistic growth model by obtaining closed‐form expressions for relevant quantities of interest, such as the first probability density function of its solution, the time until a given fixed population is reached, and the population at the inflection point.
Juan Carlos Cortés +2 more
wiley +1 more source
Kummer theory for number fields and the reductions of algebraic numbers [PDF]
Antonella Perucca, Pietro Sgobba
openalex +1 more source
ABSTRACT The well‐posedness results for mild solutions to the fractional neutral stochastic differential system with Rosenblatt process with Hurst index Ĥ∈12,1$$ \hat{H}\in \left(\frac{1}{2},1\right) $$ is discussed in this article. To demonstrate the results, the concept of bounded integral contractors is combined with the stochastic result and ...
Dimplekumar N. Chalishajar +3 more
wiley +1 more source
Unveiling New Perspectives on the Hirota–Maccari System With Multiplicative White Noise
ABSTRACT In this study, we delve into the stochastic Hirota–Maccari system, which is subjected to multiplicative noise according to the Itô sense. The stochastic Hirota–Maccari system is significant for its ability to accurately model how stochastic affects nonlinear wave propagation, providing valuable insights into complex systems like fluid dynamics
Mohamed E. M. Alngar +3 more
wiley +1 more source
On knots in algebraic number theory.
openaire +2 more sources
Reconstruction Techniques for Inverse Sturm–Liouville Problems With Complex Coefficients
ABSTRACT A variety of inverse Sturm–Liouville problems is considered, including the two‐spectrum inverse problem, the problem of recovering the potential from the Weyl function, as well as the recovery from the spectral function. In all cases, the potential in the Sturm–Liouville equation is assumed to be complex valued.
Vladislav V. Kravchenko
wiley +1 more source

