Results 61 to 70 of about 654,082 (251)
Enumeration of three term arithmetic progressions in fixed density sets [PDF]
Additive combinatorics is built around the famous theorem by Szemer\'edi which asserts existence of arithmetic progressions of any length among the integers. There exist several different proofs of the theorem based on very different techniques.
Sjöland, Erik
core
Some remarks on multiplicity codes
Multiplicity codes are algebraic error-correcting codes generalizing classical polynomial evaluation codes, and are based on evaluating polynomials and their derivatives.
Kopparty, Swastik
core +1 more source
Attractiveness of the Haar measure for linear cellular automata on Markov subgroups [PDF]
For the action of an algebraic cellular automaton on a Markov subgroup, we show that the Ces\`{a}ro mean of the iterates of a Markov measure converges to the Haar measure.
Maass, Alejandro +3 more
core +4 more sources
On the Q‐Polynomial Property of Bipartite Graphs Admitting a Uniform Structure
ABSTRACT Let Γ denote a finite, connected graph with vertex set X. Fix x ∈ X and let ε ≥ 3 denote the eccentricity of x. For mutually distinct scalars { θ i * } i = 0 ε define a diagonal matrix A * = A * ( θ 0 * , θ 1 * , … , θ ε * ) ∈ Mat X ( R ) as follows: for y ∈ X we let ( A * ) y y = θ ∂ ( x , y ) *, where ∂ denotes the shortest path length ...
Blas Fernández +3 more
wiley +1 more source
Bidiagonal Decompositions and Accurate Computations for the Ballot Table and the Fibonacci Matrix
ABSTRACT Riordan arrays include many important examples of matrices. Here we consider the ballot table and the Fibonacci matrix. For finite truncations of these Riordan arrays, we obtain bidiagonal decompositions. Using them, algorithms to solve key linear algebra problems for ballot tables and Fibonacci matrices with high relative accuracy are derived.
Jorge Ballarín +2 more
wiley +1 more source
Steiner Triple Systems With High Discrepancy
ABSTRACT In this paper, we initiate the study of discrepancy questions for combinatorial designs. Specifically, we show that, for every fixed r ≥ 3 and n ≡ 1 , 3 ( mod 6 ), any r‐colouring of the triples on [ n ] admits a Steiner triple system of order n with discrepancy Ω ( n 2 ).
Lior Gishboliner +2 more
wiley +1 more source
Algebraic properties of word equations
The question about maximal size of independent system of word equations is one of the most striking problems in combinatorics on words. Recently, Aleksi Saarela has introduced a new approach to the problem that is based on linear-algebraic properties of ...
Holub, Štěpán, Žemlička, Jan
core +1 more source
Some extensions of Alon's Nullstellensatz [PDF]
Alon's combinatorial Nullstellensatz, and in particular the resulting nonvanishing criterion is one of the most powerful algebraic tools in combinatorics, with many important applications.
Kós, Géza +2 more
core +1 more source
New Difference Triangle Sets by a Field‐Programmable Gate Array‐Based Search Technique
ABSTRACT We provide some difference triangle sets with scopes that improve upon the best known values. These are found with purpose‐built digital circuits realized with field‐programmable gate arrays (FPGAs) rather than software algorithms running on general‐purpose processors.
Mohannad Shehadeh +2 more
wiley +1 more source
ON THE STRUCTURE OF GRAPHS WHICH ARE LOCALLY INDISTINGUISHABLE FROM A LATTICE
For each integer $d\geqslant 3$ , we obtain a characterization of all graphs in which the ball of radius
ITAI BENJAMINI, DAVID ELLIS
doaj +1 more source

