Results 161 to 170 of about 1,164,606 (318)

Li Incorporation Induces Surface Chemical Disorder in Solution‐Processed Cu2ZnSn(S,Se)4

open access: yesAdvanced Materials Interfaces, EarlyView.
Lithium incorporation into Cu2ZnSn(S,Se)4 (CZTSSe) thin‐film semiconductors is highly beneficial for solar power conversion efficiencies, although directly visualising its impact on the absorber is difficult. Energy‐filtered photoemission electron microscopy measurements reveal lithium alloying induces surface chemical disorder of CZTSSe, highlighted ...
Alice Sheppard   +9 more
wiley   +1 more source

Light‐Controlled Exposure of Cancer Cells to Reactive Oxygen Species Using Organic Semiconductor Thin Films

open access: yesAdvanced Materials Interfaces, EarlyView.
Spin‐coated films of the conjugated polymer F8T2 (poly (9,9‐dioctylfluorene‐alt‐bithiophene)) generate superoxide at the film‐medium interface, enabling precise delivery of reactive oxygen species (ROS) as visible‐light “ROS patches.” Coated surfaces drive rapid, localised cytotoxicity in MCF7 cancer monolayers under white light, providing a reagent ...
Joe Kaye   +8 more
wiley   +1 more source

Fully Printed Organic Electrochemical Transistors With Low‐Resistance Electrodes on Planarized 3D‐Printed Substrates

open access: yesAdvanced Materials Technologies, EarlyView.
This paper explores integrating organic electrochemical transistors (OECTs) with planarized 3D‐printed substrates, utilizing ironing to enhance surface suitability for printing, dispense printing for thick, low‐resistance silver electrodes, and inkjet printing for semiconductor deposition.
Mohamad Kannan Idris   +3 more
wiley   +1 more source

Fully Inkjet‐Printed Organic Electrochemical Transistors: A Path Toward All‐Organic Electronics

open access: yesAdvanced Materials Technologies, EarlyView.
Fully printed organic electrochemical transistors eliminate the metal electrodes used in conventional printed organic electronics. This work demonstrates the state of the art in three applications using PBFDO and PEDOT:PSS materials: a single‐material strain sensor for real‐time detection of finger flexion, an ion sensor for monitoring aqueous NaCl ...
Ali Solgi   +5 more
wiley   +1 more source

Printed 2.5D‐Microstructures with Material‐Specific Functionalization for Tunable Biosensing

open access: yesAdvanced Materials Technologies, EarlyView.
The 2.5D‐MiSENSE platform integrates a microstructured biosensor with an in‐line milking pipeline to enable real‐time detection of mastitis biomarkers during active milk flow. The system uses a 2.5D microengineered surface and patterned electrodes to enhance milk–sensor interaction.
Matin Ataei Kachouei   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy