Results 61 to 70 of about 194,364 (283)
New materials for Li-ion batteries : synthesis and spectroscopic characterization of Li2(FeMnCo) SiO4 cathode materials [PDF]
Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance.
Bini, Marcella +5 more
core +3 more sources
A novel phthalocyanine (PC)‐based metal–organic framework (MOFs) is synthesized using ditopic PC linkers obtained through regioselective statistical condensation. The resulting MOF exhibits significant improvements in electronic absorption, thereby enhancing the material's performance in light harvesting and energy conversion.
Lukas S. Langer +12 more
wiley +1 more source
Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process [PDF]
All solid-state batteries (ASSBs) have the potential to deliver higher energy densities, wider operating temperature range, and improved safety compared with today's liquid-electrolyte-based batteries. However, of the various solid-state electrolyte (SSE)
Banerjee, A +10 more
core
Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li7La3Zr2O12 for All-Solid-State Lithium Batteries. [PDF]
The impact of liquid electrolyte soaking on the interfacial resistance between the garnet-structured Li7La3Zr2O12 (LLZO) solid electrolyte and metallic lithium has been studied. Lithium carbonate (Li2CO3) formed by inadvertent exposure of LLZO to ambient
Besli, Münir M +9 more
core
Intelligent radiative cooling devices, adaptable to various weather conditions, have the potential for year‐round energy savings. This study introduces a sustainable dual‐mode film made from polycaprolactone nanofibers and upcycled chip bags for effective thermal management.
Qimeng Song +4 more
wiley +1 more source
All solid state lithium-ion batteries have the advantages of high safety, long cycle life and high energy density, as compared with the conventional lithium-ion batteries, and have been attracting more and more research interest.
JIANG Ting-ting +5 more
doaj +1 more source
All‐solid‐state lithium batteries have emerged as a priority candidate for the next generation of safe and energy‐dense energy storage devices surpassing state‐of‐art lithium‐ion batteries.
Yuhao Liang +6 more
doaj +1 more source
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu +5 more
wiley +1 more source
Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng +7 more
wiley +1 more source
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang +9 more
wiley +1 more source

