Results 221 to 230 of about 397,762 (245)
Some of the next articles are maybe not open access.
104.07 An inequality for the altitudes of the excentral triangle
The Mathematical Gazette, 2020openaire +2 more sources
Triangles from sums of sides and altitudes
The authors consider problems of the following type: Given is a triangle with sides \(a,b,c\), and a function \(f(a,b,c)\), e.g. \(f(a,b,c)=\xi a+h_a\), where \(h_a\) is the altitude of \(a\) in the triangle and \(\xi\geq 1/2\). Now there exists a triangle with sides \(a'=f(a,b,c)\), \(b'=f(b,c,a)\), \(c'=f(c,a,b)\), if and only if \(T(a',b',c')=(a'+b'+Čerin, Zvonko, Gianella, Gian Mario
openaire +1 more source
Area of a Hexagon Formed by the Vertices and Altitude Extensions of a Triangle
openalex +1 more source
2007
Kroz učilice pripremljene u programu dinamičke geometrije izvedeni su i dokazani neki poučci koji uključuju ortocentar trokuta.
openaire
Kroz učilice pripremljene u programu dinamičke geometrije izvedeni su i dokazani neki poučci koji uključuju ortocentar trokuta.
openaire
When Can One Expect a Stronger Triangle Inequality?
, 2013V. Faĭziev, R. C. Powers, P. K. Sahoo
semanticscholar +1 more source
The Raymond Pearl memorial lecture, 1996: The eternal triangle—genes, phenotype, and environment
American Journal of Human Biology, 1997P. Baker
semanticscholar +1 more source
Camera Calibration Using The Perspective View Of A Triangle
Other Conferences, 1987W. Wolfe, K. F. Jones
semanticscholar +1 more source