Results 171 to 180 of about 26,381 (264)

Accelerated Kinetics of Desolvation and Redox Transformation Enabled by MOF Sieving for High‐Loading Mg‐S Battery

open access: yesAdvanced Functional Materials, EarlyView.
A strategy of sieving catalysis based on the MIL‐101(Cr) with multistage pore structure and Lewis acid sites has been proposed as the catalyst to accelerate the kinetics of desolvation and redox conversion of sulfur species, achieving high performance Mg‐S batteries.
Qinghua Guan   +8 more
wiley   +1 more source

Ambient‐Dried MOF/Cellulose‐Based Aerogels for Atmospheric Water Harvesting and Sustainable Water Management in Agriculture

open access: yesAdvanced Functional Materials, EarlyView.
Ambient‐dried composite aerogels integrating MOF‐303, TEMPO‐oxidized cellulose nanofibers (TOCNF), and hygroscopic salts enable high‐performance atmospheric water harvesting (AWH), achieving competitive uptake at both low and high humidity. Enhanced with a solar‐evaporation layer, these scalable aerogels support self‐sustained plant growth in a ...
Ahmadreza Ghaffarkhah   +12 more
wiley   +1 more source

Highly Scalable, Raspberry‐Like Microbeads with Nano‐/Micro‐Confined Hybrid Hydrogel Desiccants for Rapid Atmospheric Water Harvesting

open access: yesAdvanced Functional Materials, EarlyView.
A scalable nano‐/micro‐confinement strategy is developed, where polyacrylamide (PAM)‐LiCl hybrid desiccants are confined within hollow nanoparticles (HNPs) and assembled into raspberry‐like microbeads. The beads have a hydrogel‐rich core and an NP‐rich shell for fast absorption and desorption, releasing water 13.6 L kg⁻¹ day⁻¹.
Yunchan Lee   +6 more
wiley   +1 more source

Flexibility and Dynamicity Enhances and Controls Supramolecular Self‐Assembly of Zinc(II) Metallogels

open access: yesAdvanced Functional Materials, EarlyView.
Zinc(II) coordination complexes with tunable aryloxy‐imine ligands exhibit controllable supramolecular self‐assembly into hierarchical fibrous structures. Coordination‐driven stacking, not π–π interactions, enables gelation, dynamic assembly/disassembly, and enhanced nanomechanical properties.
Merlin R. Stühler   +10 more
wiley   +1 more source

Engineering Topographical Cues to Enhance Neural Regeneration in Spinal Cord Injury: Overcoming Challenges and Advancing Therapies

open access: yesAdvanced Functional Materials, EarlyView.
Spinal cord injury (SCI) poses significant challenges for regeneration due to a series of secondary injury mechanisms. How to use biomaterial approach to target the failed regeneration after SCI remains a critical challenge. This review systematically evaluates current strategies to optimize biomaterial topographies for neurite outgrowth, axonal ...
Wei Xu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy