Results 201 to 210 of about 26,381 (264)

Hollow‐Structured Nanorobot with Excellent Magnetic Propulsion for Catalytic Pollutant Degradation, Anti‐Bacterial and Biofilm Removal

open access: yesAdvanced Healthcare Materials, EarlyView.
A hollow‐structured Fe3O4@AgAu@PDA‐ZnPc nanosphere has been developed, exhibiting controllable catalytic activity and “photothermal‐photodynamic‐Ag+” coupling antibacterial characteristics. When subjected to a rotating magnetic field, these performances are uniquely enhanced by magnetic propulsion, allowing the nanosphere to function as a magnetic ...
Jing Wang   +7 more
wiley   +1 more source

Colon‐Targeted Natural Polysaccharide‐Berberine Armored Hydrogel for the Treatment of Colitis

open access: yesAdvanced Healthcare Materials, EarlyView.
In this research, a novel hydrogel system targeting the colon is developed, incorporating Rhubarb polysaccharides and berberine‐loaded dendrimer. This hydrogel, forms through intermolecular hydrogen bonding and electrostatic interactions, accumulates in colonic tissues, effectively alleviating pathological immune hyperactivation while modulating gut ...
Miao Guo   +8 more
wiley   +1 more source

Advanced Multipurpose Spectroscopic Nanobio‐Device for Concurrent Lab‐on‐a‐Chip Label‐Free Separation and Detection of Extracellular Vesicles as Key‐Biomarkers for Point‐of‐Care Cardiovascular Disease Diagnostics

open access: yesAdvanced Healthcare Materials, EarlyView.
AIMSPec‐LoC is a novel lab‐on‐a‐chip platform integrating size‐based extracellular vesicle (EVs) separation with label‐free Raman spectroscopy and AI‐powered classification via SKiNET. This high‐throughput, portable system enables real‐time, multiplexed molecular fingerprinting of EVs from biofluids, offering transformative potential for early, non ...
Emma Buchan   +3 more
wiley   +1 more source

Nanomaterial‐Enhanced Biosensing: Mechanisms and Emerging Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
Nanomaterial integration transforms biosensor capabilities through enhanced signal transduction, sensitivity, and selectivity. This review analyzes how nanoscale materials—from nanoparticles to nanosheets—leverage unique physicochemical properties to revolutionize electrochemical, optical, and electrical biosensing.
Younghak Cho   +3 more
wiley   +1 more source

Decoding Hydrogel Porosity: Advancing the Structural Analysis of Hydrogels for Biomedical Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
Porosity governs transport mechanics in hydrogels, yet characterization in its native state remains challenging. This work harnesses particle tracking to uncover three‐dimensional pore geometric features in polyethylene glycol hydrogels. Measurements in the native state reveal pores characteristics are comparable to those obtained by cryogenic scanning
M. A. Kristine Tolentino   +5 more
wiley   +1 more source

Peptide Display Directed Assembly of Biopolymer Core–Silica Shell Particles

open access: yesAdvanced Healthcare Materials, EarlyView.
Bacterial cells are engineered to produce biopolyester particles displaying peptides mediating growth of silica. Peptide‐coated biopolyester particles are treated with silica precursors and silica shell formation is studied. Transmission electron microscopy shows silica‐coated BPs which are formed after the silicification treatment. Characterization of
Deeptee Chandrashekhar Pande   +2 more
wiley   +1 more source

An Organ‐on‐Chip Platform for Strain‐Controlled, Tissue‐Specific Compression of Cartilage and Mineralized Osteochondral Interface to Study Mechanical Overloading in Osteoarthritis

open access: yesAdvanced Healthcare Materials, EarlyView.
A mechanically active OsteoChondral Unit (OCU)‐on‐Chip platform mimicking the OCU's functional anatomy and the strain gradient across the osteochondral interface is presented. Upon compartment‐specific hyperphysiological compression, the model replicates mechanisms observed in osteoarthritis (OA) progression, such as calcium crystal accumulation ...
Andrea Mainardi   +10 more
wiley   +1 more source

Engineering a Human‐Sized Common Bile Duct Prototype with Regenerative Potential: In Vitro Evaluation of Mechanics, Function, Degradation, and Immune Modulation

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents a multiphasic bile duct construct composed of biocompatible materials and cells, featuring an inner layer that supports biliary epithelium growth, a middle layer providing mechanical strength, and an outer cell‐permissive layer designed to support future in vivo integration.
Mattia Pasqua   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy