Results 61 to 70 of about 25,030 (204)

Engineering Deformation and Failure in Diamond Triply Periodic Minimal Surface Lattices via 3D Wall‐Thickness Grading

open access: yesAdvanced Engineering Materials, EarlyView.
The work demonstrates that strategic wall‐thickness grading in diamond triply periodic minimal surface lattices enables precise tuning of deformation and failure behavior under compression. Different gradation patterns guide how and where the structure collapses, improving energy absorption or promoting controlled brittle failure.
Giovanni Rizza   +3 more
wiley   +1 more source

Understanding and Optimizing Li Substitution in P2‐Type Sodium Layered Oxides for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous 
Mingfeng Xu   +5 more
wiley   +1 more source

Some Aspects of the AdS/CFT Correspondence

open access: yes, 2004
This is a very brief review of some aspects of the AdS/CFT correspondence with an emphasis on the role of the topology of the boundary and the meaning of the sum over bulk geometries.
de Boer, Jan, Maoz, Liat, Naqvi, Asad
core  

3D (Bio) Printing Combined Fiber Fabrication Methods for Tissue Engineering Applications: Possibilities and Limitations

open access: yesAdvanced Functional Materials, EarlyView.
Biofabrication aims at providing innovative technologies and tools for the fabrication of tissue‐like constructs for tissue engineering and regenerative medicine applications. By integrating multiple biofabrication technologies, such as 3D (bio) printing with fiber fabrication methods, it would be more realistic to reconstruct native tissue's ...
Waseem Kitana   +2 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Micropatterned Biphasic Printed Electrodes for High‐Fidelity on‐Skin Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Micropatterned biphasic printed electrodes achieve unprecedented skin conformity and low impedance by combining liquid‐metal droplets with microstructured 3D lattices. This scalable approach enables high‐fidelity detection of ECG, EMG, and EEG signals, including alpha rhythms from the forehead, with long‐term comfort and stability.
Manuel Reis Carneiro   +4 more
wiley   +1 more source

Bimetallic Nanoparticles as Cocatalysts for Photocatalytic Hydrogen Production

open access: yesAdvanced Functional Materials, EarlyView.
Recent developments have introduced bimetallic nanoparticles as effective cocatalysts for photocatalytic systems. This review explores the rapidly expanding research on bimetallic cocatalysts for photocatalytic production of hydrogen, emphasizing the creation of carrier‐selective contacts, localized surface plasmon resonance effects, methodologies for ...
Yufen Chen   +4 more
wiley   +1 more source

Ladder‐Type Benzene‐Perylene Dyes with Efficient Laser Properties in the Near‐IR by Detracting/Activating Low/High Frequency Vibronic Modes

open access: yesAdvanced Functional Materials, EarlyView.
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández   +12 more
wiley   +1 more source

Modulating Two‐Photon Absorption in a Pyrene‐Based MOF Series: An In‐Depth Investigation of Structure–Property Relationships

open access: yesAdvanced Functional Materials, EarlyView.
This study investigates H4TBAPy‐based metal–organic frameworks (MOFs) ‐ NU‐1000, NU‐901, SrTBAPy, and BaTBAPy ‐ for multiphoton absorption (MPA) performance. It observes topology‐dependent variations in the 2PA cross‐section, with BaTBAPy exhibiting the highest activity.
Simon N. Deger   +10 more
wiley   +1 more source

Combinatorial Synthesis of Next Generation Water‐Soluble Quaternized N‐Halamine Oligomers with Long‐Lasting Antiviral Properties

open access: yesAdvanced Functional Materials, EarlyView.
A combinatorial library of dual‐functional antiviral oligomers incorporating N‐halamine and quaternary ammonium functionalities is developed for long‐lasting antiviral activity. The lead materials exhibit rapid and durable antiviral activity against SARS‐CoV‐2 variants and influenza H1N1, with 4 to 5 log reduction in viral copies at 5 mg mL−1 ...
Eid Nassar‐Marjiya   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy