Results 1 to 10 of about 1,783 (122)
Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity [PDF]
Astronomy & Astrophysics, 2019 Context. Markarian 501 (Mrk 501) is a very high-energy (VHE) gamma-ray blazar located at z = 0.034, which is regularly monitored by a wide range of multi-wavelength instruments, from radio to VHE gamma rays.M. Acciari, S. Ansoldi, L. A. Antonelli, A. Babi'c, B. Banerjee, U. D. Almeida, J. Barrio, J. Gonz'alez, W. Bednarek, E. Bernardini, A. Berti, J. Besenrieder, W. Bhattacharyya, C. Bigongiari, O. Blanch, G. Bonnoli, G. Busetto, R. Carosi, G. Ceribella, S. Cikota, S. M. Colak, P. Colin, E. Colombo, J. Contreras, J. Cortina, S. Covino, V. D’Elia, P. D. Vela, F. Dazzi, A. Angelis, B. Lotto, M. Delfino, J. Delgado, F. Pierro, E. Nera, A. Domínguez, D. Prester, M. Doro, V. Ramazani, A. Fattorini, A. Fern'andez-Barral, G. Ferrara, D. Fidalgo, L. Foffano, M. V. Fonseca, L. Font, C. Fruck, D. Galindo, S. Gallozzi, R. L'opez, M. Garczarczyk, S. Gasparyan, M. Gaug, P. Giammaria, N. Godinovi'c, D. Guberman, D. Hadasch, A. Hahn, T. Hassan, J. Herrera, J. Hoang, D. Hrupec, S. Inoue, K. Ishio, Y. Iwamura, H. Kubo, J. Kushida, D. Kuvevzdi'c, A. Lamastra, D. Lelas, F. Leone, E. Lindfors, S. Lombardi, F. Longo, M. L'opez, A. L'opez-Oramas, B. Fraga, C. Maggio, P. Majumdar, M. Makariev, M. Mallamaci, G. Maneva, M. Manganaro, L. Maraschi, M. Mariotti, M. Mart'inez, S. Masuda, D. Mazin, M. Minev, J. Miranda, R. Mirzoyan, E. Molina, A. Moralejo, V. Moreno, E. Moretti, P. R., V. Neustroev, A. Niedźwiecki, M. Rosillo, C. Nigro, K. Nilsson, D. Ninci, K. Nishijima, K. Noda, L. Nogu'es, S. Paiano, J. Palacio, D. Paneque, R. Paoletti, J. Paredes, G. Pedaletti, P. Peñil, Michele Peresano, M. Persic, P. Moroni, E. Prandini, I. Puljak, J. Garcia, M. Rib'o, J. Rico, C. Righi, A. Rugliancich, L. Saha, N. Sahakyan, T. Saito, K. Satalecka, T. Schweizer, J. Sitarek, I. vSnidari'c, D. Sobczynska, A. Somero, A. Stamerra, M. Strzys, T. Suri'c, F. Tavecchio, P. Temnikov, T. Terzi'c, M. Teshima, N. Torres-Alb'a, S. Tsujimoto, J. Scherpenberg, G. Vanzo, M. Acosta, I. Vovk, M. Will, D. Zari'c, F. C. A. Arbet-Engels, D. Baack, M. Balbo, A. Biland, M. Blank, T. Bretz, Kai Brügge, M. Bulinski, J. Buss, M. Doerr, D. Dorner, S. Einecke, D. Elsaesser, D. Hildebrand, L. Linhoff, K. Mannheim, S. Mueller, D. Neise, A. Neronov, M. Noethe, A. Paravac, W. Rhode, B. Schleicher, F. Schulz, K. Sedlaczek, A. Shukla, V. Sliusar, E. V. Willert, R. Walter, C. Wendel, A. Tramacere, A. Lien, M. Perri, F. Verrecchia, M. Armas Padilla, C. Leto, A. Lahteenmaki, M. Tornikoski, J. Tammi, Instituto de Astrof'isica de Canarias, E-38200 La Laguna, U. L. Laguna, D. Astrof'isica, E-38200 La Laguna, Tenerife, Spain., U. Udine, I. Trieste, I. Udine, Italy., National Centre for Radio Astrophysics, I. Rome, C. Rijeka, 51000 Rijeka, U. O. S. -. Fesb, 21000 Split, U. O. Z. -. Fer, 10000 Zagreb, University of Osijek, 31000 Osijek, Rudjer Boskovic Institute, Croatia., S. S. I. O. Physics, Hbni, 1. Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India., Centro Brasileiro de Pesquisas F'isicas, 22290-180 Urca, R. Janeiro, Brasil., Unidad de Part'iculas y Cosmolog'ia, U. Complutense, E. Madrid, University of L'od'z, D. O. Astrophysics, PL-90236 L'od'z, Poland, D. Elektronen-Synchrotron, D. Zeuthen, H Germany, Istituto Nazionale Fisica Nucleare, 0. Italy, M. F. Physik, D-80805 Munchen, Institut de F'isica d'Altes Energies, T. Z. F. O. Science, Technology, E-08193 Bellaterra, U. Siena, I. Pisa, I-53100 Siena, U. Padova, Infn, I-35131 Padova, U. Pisa, I. Pisa, Finnish Magic Consortium Finnish Centre of Astronomy with Eso, U. Turku, F. Turku, Finland., A. Unit, U. Oulu, F. Oulu, Technische Universitat Dortmund, D. Dortmund, Departament de F'isica, CERES-IEEC, U. Barcelona, U. Barcelona, Iccub, IEEC-UB, E. Barcelona, RA ICRANet-ArmeniaatNAS, 0019 Yerevan, Armenia, J. Icrr, T. U. O. Tokyo, 277-8582 Chiba, Japan., D. Physics, Kyoto University, 606-8502 Kyoto, T. University, 259-1292 Kanagawa, Riken, 351-0198 Saitama, Inst. for Nucl. Research, Nucl. Energy, B. A. O. Sciences, BG-1784 Sofia, Bulgaria., H. Berlin, I. Germany, A. N. D. D. Fisica, Universita di UdineI.N.F.N. Trieste, I. Trieste, A. Spain, also at INAF-Trieste, D. Astronomy, U. Bologna, E. Zurich, CH-8093 Zurich, Switzerland., I. -. D. O. Astronomy, U. Geneva, 16, CH-1290 Versoix, U. Wurzburg, D-97074 Wurzburg, also at the Department of Physics of Kyoto University, Center for Space Research, Exploration in Space Science, N. J. S. Center, Greenbelt, MD 20771, Usa, U. Maryland, B. County, 1000 Hilltop Circle, Baltimore., MD 21250, S. S. D. C. -. Asi, V. Politecnico, s.n.c., I-00133, Roma, I. Roma, 33 viadiFrascati, I-00040 Monteporzio, A. L. M. R. Observatory, Metsahovintie 114, FI-02540 Kylmala, Aalto University Department of Electronics, Nanoengineering, P. O. B. 15500, FI-00076 Aalto +324 moresemanticscholar +1 more sourceTwirling and whirling: viscous dynamics of rotating elastic filaments. [PDF]
Physical Review Letters, 1999 Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced filament with twist and bend elasticity.C. Wolgemuth, T. Powers, Raymond E. Goldstein Department of Physics, Program in Applied Mathematics, U. Arizona, Division of Engineering, A. Sciences, Harvard University +7 moresemanticscholar +1 more sourceModel Reduction and Neural Networks for Parametric PDEs [PDF]
, 2020 We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model ...Bhattacharya, Kaushik, Hosseini, Bamdad, Kovachki, Nikola B., Stuart, Andrew M. +3 morecore +4 more sourcesSparse Deterministic Approximation of Bayesian Inverse Problems [PDF]
, 2011 We present a parametric deterministic formulation of Bayesian inverse
problems with input parameter from infinite dimensional, separable Banach
spaces. In this formulation, the forward problems are parametric, deterministic
elliptic partial differential ...A M Stuart, Andreev R, C Schwab, Chkifa A Cohen A DeVore R Schwab C, Cohen A, Gittelson C J, Hoang V Ha, Hoermander L, Kaipio J, Liu J, Robert C P, Roberts G O, Spanos P D +12 morecore +3 more sourcesOn the General Analytical Solution of the Kinematic Cosserat Equations [PDF]
, 2016 Based on a Lie symmetry analysis, we construct a closed form solution to the
kinematic part of the (partial differential) Cosserat equations describing the
mechanical behavior of elastic rods.D Michels, D Michels, D Robertz, DL Michels, DQ Cao, E Cosserat, F Boyer, F Oliveri, I Riedel-Kruse, J Ainley, J Butcher, J Carminati, J Elgeti, JM Thomas, R Cortez, R Goldstein, R Granger, RTM Filho, SS Antman, T Bächler, W Hereman, WM Seiler, Y Blinkov +22 morecore +2 more sourcesPartially integrable systems in multidimensions by a variant of the
dressing method. 1
, 2006 In this paper we construct nonlinear partial differential equations in more
than 3 independent variables, possessing a manifold of analytic solutions with
high, but not full, dimensionality. For this reason we call them ``partially
integrable''.A I Zenchuk, Ablowitz M J, Ablowitz M J, Beals R Coifman R R, Bogdanov L V, Calogero F, Drinfeld V G, Konopelchenko B, Manakov S V Santini P M, P M Santini, Zakharov V E, Zakharov V E, Zakharov V E, Zakharov V E, Zakharov V E, Zakharov V E, Zenchuk A +16 morecore +1 more sourceInitial-boundary value problems for discrete evolution equations:
discrete linear Schrodinger and integrable discrete nonlinear Schrodinger
equations
, 2008 We present a method to solve initial-boundary value problems for linear and
integrable nonlinear differential-difference evolution equations. The method is
the discrete version of the one developed by A. S.Ablowitz M J, Ablowitz M J, Ablowitz M J, Adler V, Belokolos E D, Bikbaev R F, Calogero F, de Monvel A Boutet, Ehrenpreis L, Faddeev L D, Fokas A S, Gino Biondini, Guenbo Hwang, Henkin G, Manakov S V, Manakov S V, Maruno K-I, Palamodov V P, Sabatier P C, Skylanin E K, Vekslerchik V E, Zakharov V E, Zakharov V E +22 morecore +2 more sourcesNonlinear Methods for Model Reduction
, 2020 The usual approach to model reduction for parametric partial differential
equations (PDEs) is to construct a linear space $V_n$ which approximates well
the solution manifold $\mathcal{M}$ consisting of all solutions $u(y)$ with $y$
the vector of ...Bonito, Andrea, Cohen, Albert, DeVore, Ronald, Guignard, Diane, Jantsch, Peter, Petrova, Guergana +5 morecore +2 more sources