Results 261 to 270 of about 1,449,714 (389)

NFC/RFID-enabled wearables and implants for biomedical applications. [PDF]

open access: yesMicrosyst Nanoeng
Zou H   +9 more
europepmc   +1 more source

Geometrically Templated, Ultra‐Lightweight and High Strength Soap Films from Lyotropic Liquid Crystalline Graphene Oxide/Polymer Composites

open access: yesAdvanced Functional Materials, EarlyView.
Shellular materials form spontaneously by dip coating the primitive triply periodic minimal surface (TPMS) wireframe in an aqueous solution of lyotropic liquid crystalline graphene oxide (GO) nanosheets mixed with polymers. Regulated by surface tension, GO nanosheets align on the polymer soap film as the stress builds up during drying.
Yinding Chi   +9 more
wiley   +1 more source

Ecoresorbable chipless temperature-responsive tag made from biodegradable materials for sustainable IoT. [PDF]

open access: yesNat Commun
Bourely J   +9 more
europepmc   +1 more source

Photoresponsive Gas‐Permeable Membranes: Fundamentals, Innovations, and Prospects

open access: yesAdvanced Functional Materials, EarlyView.
Photoresponsive gas‐permeable membranes can be potentially used for smart packing, carbon capture, hydrogen purification, and optical gas valves due to their remote and non‐contact activation, precise spatial and temporal control, and reversible switching capabilities.
Zhuan Wang   +6 more
wiley   +1 more source

Tunable Coordination Number in Non‐Metal‐Introduced Copper Catalysts Enables High‐Performance Electrochemical CO2 Reduction to C2 Products

open access: yesAdvanced Functional Materials, EarlyView.
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du   +8 more
wiley   +1 more source

A Peptide Nucleic Acid‐Functionalized Heterojunction Thin Film Transistor as a Scalable and Reusable Platform for Label‐Free Detection of MicroRNA

open access: yesAdvanced Functional Materials, EarlyView.
A miniaturized, label‐free, and enzyme‐free biosensor (miR‐TFT) enables direct electrical detection of microRNA (miRNA) with single‐nucleotide specificity and a detection limit of 0.6 fM. Built on a tri‐channel In2O3/ZnO heterojunction and functionalized with bespoke peptide nucleic acid (PNA) probes, the device is robust, reusable, and compatible with
Wejdan S. Al Ghamdi   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy