Results 151 to 160 of about 1,475,589 (309)
This work presents an overview of the PTC‐VMD system for water‐hydrogen co‐generation. a) Illustration of the hydrogel‐based PTC membrane and the co‐generation of water and hydrogen. b) Structure of the PTC‐VMD system and the functions of each component layer.
Jiawei Sun +7 more
wiley +1 more source
The ultraselective H2S detection of the ZIF‐L/SnS2 heterostructure is demonstrated. The introduction of 2‐dimensional (2D) breathable ZIF‐L results in a substantial increase in H2S selectivity attributable to the molecular sieving effect, which impedes the permeation of gases with large kinetic diameters and high polarity.
Soo Min Lee +7 more
wiley +1 more source
This study reveals that higher shell S coordination can effectively modulate the spin state of FeN4 site via long‐range electronic interactions, giving rise to the oriented generation of singlet oxygen from peroxymonosulfate activation. Abstract Precise manipulation of coordination structure of single‐atom sites and establishment of schematic ...
Liang Zhang +8 more
wiley +1 more source
Clouding Points and Flow Properties of Aqueous Solutions of Non-ionic Surface Active Agents
Shigetaka Kuroiwa
openalex +2 more sources
Metal Ammine Formation in Aqueous Solution. VI. Stability and Light Absorption of Copper Ethylenediamine Ions. [PDF]
Jannik Bjerrum +5 more
openalex +1 more source
Achieving Large and Anisotropic Spin‐Mediated Thermal Transport in Textured Quantum Magnets
An advanced solvent‐cast cold pressing method is developed to synthesize highly textured quantum magnets. By aligning spin chains in Ca2CuO3 perpendicular to the pressing direction, a spin‐mediated thermal conductivity of 10 ± 1 W m⁻¹ K⁻¹ is achieved, the highest reported for polycrystalline quantum materials.
Shucheng Guo +6 more
wiley +1 more source
THE VAPOR PRESSURES AND FREE ENERGIES OF THE HYDROGEN HALIDES IN AQUEOUS SOLUTION; THE FREE ENERGY OF FORMATION OF HYDROGEN CHLORIDE. [PDF]
Stuart J. Bates, H. Darwin Kirschman
openalex +1 more source
Thermally Induced Gelling Systems Based on Patchy Polymeric Micelles
A novel strategy to design thermally induced gelling systems with tunable material properties is reported. Polymeric mixed‐shell micelles displaying multiple thermosensitive patchy domains formed hydrogels by assembling into well‐entangled worm‐like network structures upon heating to body temperature. The patchy micelle design significantly affects the
Binru Han +9 more
wiley +1 more source

