Results 261 to 270 of about 368,153 (290)

Facet‐Engineered S‐Scheme Heterostructure With Enhanced Active Sites for Efficient Photocatalytic Degradation of Organic Contaminants

open access: yesAdvanced Functional Materials, EarlyView.
The facet‐engineered ZnO/Zn3In2S6 heterostructure, dominated by {001} plane coupling, exposes abundant unsaturated Zn sites with elongated Zn─O bonds, directing photoexcited charge carriers along an S‐scheme pathway and suppressing recombination. Enhanced interfacial Zn adsorption toward bisphenol A and methylene blue further synergistically promotes ...
Yang Yang   +6 more
wiley   +1 more source

Conductance‐Dependent Photoresponse in a Dynamic SrTiO3 Memristor for Biorealistic Computing

open access: yesAdvanced Functional Materials, EarlyView.
A nanoscale SrTiO3 memristor is shown to exhibit dynamic synaptic behavior through the interaction of local electrical and global optical signals. Its photoresponse depends quantitatively on the conductance state, which evolves and decays over tunable timescales, enabling ultralow‐power, biorealistic learning mechanisms for advanced in‐memory and ...
Christoph Weilenmann   +8 more
wiley   +1 more source

Editorial: Emotions and artificial intelligence. [PDF]

open access: yesFront Psychol
Belli S   +3 more
europepmc   +1 more source

Micro and Nanostructural Diversity of Lizard Osteoderm Capping Tissue in Relation to Mechanical Performance

open access: yesAdvanced Functional Materials, EarlyView.
This study shows that lizard osteoderm capping tissue is a hyper‐mineralized hydroxyapatite layer consistently covering the superficial osteoderm surface in those species studied here, yet it varies greatly in morphology, nanostructure, and mechanical performance across species.
Adrian Rodriguez‐Palomo   +10 more
wiley   +1 more source

From Mechanics to Electronics: Influence of ALD Interlayers on the Multiaxial Electro‐Mechanical Behavior of Metal–Oxide Bilayers

open access: yesAdvanced Functional Materials, EarlyView.
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy