Results 91 to 100 of about 53,638 (389)
Double Helical Plasmonic Antennas
Plasmonic double helical antennas funnel circularly polarized light to the nanoscale, offering strong chiroptical interaction and directional light emission. Extending a single helix design tool, this study combines numerical modeling with experimental validation, revealing large, broadband dissymmetry factors in the visible range.
Aleksei Tsarapkin+7 more
wiley +1 more source
This work develops an ultrarobust, flexible, and solvent‐free eutectic gel featuring stretch‐induced orientation. Overcoming hydrogel limitations, the gel achieves record toughness (133.86 MJ m−3) while integrating strain/temperature/capacitive sensing.
Tingzhong Li+5 more
wiley +1 more source
Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids
The unique plasma-specific features and physical phenomena in the organization of nanoscale solid-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed.
Meyyappan, M.+2 more
core +2 more sources
Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth+2 more
wiley +1 more source
Hopping Conduction in Disordered Carbon Nanotubes
We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^
A. Zaslavsky+28 more
core +1 more source
This work presents a soft microelectrode array based on vertically aligned carbon nanotube (CNT) forests, combining high conductivity with mechanical softness. A densification process and air‐pressure‐assisted flexibilization improve structural integrity, ensuring stable insertion and reduced inflammation.
Hyeonhee Roh+8 more
wiley +1 more source
Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties
Over the past ten years, self-aligned TiO2 nanotubes have attracted tremendous scientific and technological interest due to their anticipated impact on energy conversion, environment remediation and biocompatibility.
Nguyen, Nhat Truong+3 more
core +1 more source
A 3D‐architected auxetic metamaterial is used to construct capacitive and resistive tactile sensors via digital light processing‐based additive manufacturing. The inward deformation of the proposed structure under compression amplifies local strain, enhancing sensing performance.
Mingyu Kang+3 more
wiley +1 more source
Charge carrier concentration and mobility in TiO2, ZrO2, and HfO2 powder films are experimentally mapped as a function of temperature. The results uncover polaron‐mediated transport regimes and field‐activated conduction, enabling the design of oxide‐based electronic and energy devices with thermally tunable functionality.
Beatriz Moura Gomes+3 more
wiley +1 more source
Biosupercapacitors for Human‐Powered Electronics
Biosupercapacitors are emerging as biocompatible and integrative energy systems for next‐generation bioelectronics, offering rapid charge–discharge performance and mechanical adaptability. This review systematically categorizes their applications from external to organ‐level systems and highlights their multifunctional roles in sensing, actuation, and ...
Suhyeon Kim+7 more
wiley +1 more source