Results 21 to 30 of about 2,475 (116)
Multivariable q‐Hahn polynomials as coupling coefficients for quantum algebra representations
We study coupling coefficients for a multiple tensor product of highest weight representations of the SU(1, 1) quantum group. These are multivariable generalizations of the q‐Hahn polynomials.
Hjalmar Rosengren
wiley +1 more source
Orthogonal Basic Hypergeometric Laurent Polynomials
The Askey-Wilson polynomials are orthogonal polynomials in$x = cos heta$, which are given as a terminating $_4phi_3$ basic hypergeometric series. The non-symmetric Askey-Wilson polynomials are Laurent polynomials in $z=e^{iheta}$, which are given as a ...
Mourad E.H. Ismail, Dennis Stanton
doaj +1 more source
On Solutions of Holonomic Divided-Difference Equations on Nonuniform Lattices
The main aim of this paper is the development of suitable bases that enable the direct series representation of orthogonal polynomial systems on nonuniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this
Salifou Mboutngam +3 more
doaj +1 more source
Exactly solvable `discrete' quantum mechanics; shape invariance, Heisenberg solutions, annihilation-creation operators and coherent states [PDF]
Various examples of exactly solvable `discrete' quantum mechanics are explored explicitly with emphasis on shape invariance, Heisenberg operator solutions, annihilation-creation operators, the dynamical symmetry algebras and coherent states.
Odake, Satoru, Sasaki, Ryu
core +3 more sources
Equivalences of the Multi-Indexed Orthogonal Polynomials [PDF]
Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion.
Odake, Satoru
core +3 more sources
The Universal Askey-Wilson Algebra and DAHA of Type (C_1^∨,C_1)
Around 1992 A. Zhedanov introduced the Askey-Wilson algebra AW(3). Recently we introduced a central extension $Delta_q$ of AW(3) called the universal Askey-Wilson algebra.
Paul Terwilliger
doaj +1 more source
Continuous −1$-1$ hypergeometric orthogonal polynomials
Abstract The study of −1$-1$ orthogonal polynomials viewed as q→−1$q\rightarrow -1$ limits of the q$q$‐orthogonal polynomials is pursued. This paper presents the continuous polynomials part of the −1$-1$ analog of the q$q$‐Askey scheme. A compendium of the properties of all the continuous −1$-1$ hypergeometric polynomials and their connections is ...
Jonathan Pelletier +2 more
wiley +1 more source
Wilson function transforms related to Racah coefficients
The irreducible $*$-representations of the Lie algebra $su(1,1)$ consist of discrete series representations, principal unitary series and complementary series.
A.N. Kirillov +37 more
core +2 more sources
The equilibrium positions of the multi-particle classical Calogero-Sutherland-Moser (CSM) systems with rational/trigonometric potentials associated with the classical root systems are described by the classical orthogonal polynomials; the Hermite ...
Odake, S., Sasaki, R.
core +2 more sources
Double Affine Hecke Algebras of Rank 1 and the Z_3-Symmetric Askey-Wilson Relations
We consider the double affine Hecke algebra H=H(k_0,k_1,k_0^v,k_1^v;q) associated with the root system (C_1^v,C_1). We display three elements x, y, z in H that satisfy essentially the Z_3-symmetric Askey-Wilson relations.
Paul Terwilliger, Tatsuro Ito
doaj +1 more source

