Results 71 to 80 of about 7,854 (155)
Double Affine Hecke Algebras of Rank 1 and the Z_3-Symmetric Askey-Wilson Relations
We consider the double affine Hecke algebra H=H(k_0,k_1,k_0^v,k_1^v;q) associated with the root system (C_1^v,C_1). We display three elements x, y, z in H that satisfy essentially the Z_3-symmetric Askey-Wilson relations.
Paul Terwilliger, Tatsuro Ito
doaj +1 more source
We show explicitly that all 2nd order superintegrable systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing.
Ernest G. Kalnins +2 more
doaj +1 more source
Via the solutions of systems of algebraic equations of Bethe Ansatz type, we arrive at bounds for the zeros of orthogonal (basic) hypergeometric polynomials belonging to the Askey-Wilson, Wilson and continuous Hahn families.Comment: 21 pages ...
Emsiz, E., van Diejen, J. F.
core +1 more source
A Relativistic Conical Function and its Whittaker Limits
In previous work we introduced and studied a function R(a+,a−,c;v,vˆ) that is a generalization of the hypergeometric function _2F_1 and the Askey-Wilson polynomials.
Simon Ruijsenaars
doaj +1 more source
The factorization method for the Askey–Wilson polynomials
A special Infeld-Hall factorization is given for the Askey-Wilson second order q-difference operator. It is then shown how to deducd a generalization of the corresponding Askey-Wilson polynomials.
openaire +3 more sources
Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations
Bethe ansatz formulation is presented for several explicit examples of quasi exactly solvable difference equations of one degree of freedom which are introduced recently by one of the present authors.
Ryu Sasaki, Wen-Li Yang, Yao-Zhong Zhang
doaj +1 more source
Recurrence Relations of the Multi-Indexed Orthogonal Polynomials V : Racah and $q$-Racah types
In previous papers, we discussed the recurrence relations of the multi-indexed orthogonal polynomials of the Laguerre, Jacobi, Wilson and Askey-Wilson types. In this paper we explore those of the Racah and $q$-Racah types. For the $M$-indexed ($q$-)Racah
Odake, Satoru
core +1 more source
Bispectral extensions of the Askey–Wilson polynomials
Following the pioneering work of Duistermaat and Gr nbaum, we call a family $\{p_n(x)\}_{n=0}^{\infty}$ of polynomials bispectral, if the polynomials are simultaneously eigenfunctions of two commutative algebras of operators: one consisting of difference operators acting on the degree index $n$, and another one of operators acting on the variable $x$.
openaire +2 more sources
Zhedanov's algebra AW(3) is considered with explicit structure constants such that, in the basic representation, the first generator becomes the second order q-difference operator for the Askey-Wilson polynomials. It is proved that this representation is
Tom H. Koornwinder
doaj
A projection formula for the Askey-Wilson polynomials and an application [PDF]
A projection formula for p n ( x ; a , b , c , d | q ) {p_n}(x;a,b,c,d|q) , the Askey-Wilson polynomials, is obtained by using a generalization of Askey and Wilson’s q q
openaire +1 more source

