Results 281 to 290 of about 200,361 (330)

A Sacrificial 3D Printed Vessel‐on‐Chip Demonstrates a Versatile Approach to Model Granulation Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
A novel method that combines 3D printing and organ‐on‐chip technology enables the creation of hollow channels lined with endothelial cells through a fibroblast‐populated connective tissue matrix. The model supports stable metabolic culture conditions, angiogenic sprouting, and immune cell migration, thereby demonstrating an easy and versatile method to
Jonas Jäger   +7 more
wiley   +1 more source

Plasma‐Polymerized Nanoparticles Presenting Fibrillin‐1 Drive Rapid Re‐Endothelialization of Vascular Grafts

open access: yesAdvanced Healthcare Materials, EarlyView.
Commercial vascular grafts are made from ePTFE, a highly hydrophobic, foreign material that fails at a high rate in small‐diameter applications. Plasma polymer nanoparticles (PPN) are a versatile material functionalisation tool, used here to present fibrillin‐1 fragment PF8 on the graft surface.
Bob S. L. Lee   +9 more
wiley   +1 more source

Transformative Bioactive Wear Resistant Ti3Au:N and Ti3Au:O Coatings for Medical Implants and Devices

open access: yesAdvanced Healthcare Materials, EarlyView.
Coatings of titanium‐gold are grown in nitrogen and oxygen environments via magnetron sputtering to simultaneously enhance their biotribological and antibacterial properties. The coatings are highly crystalline with superhard scratch‐resistant surfaces and wear rates 20 times lower than the bare Ti‐6Al‐4V substrate.
Cecil Cherian Lukose   +11 more
wiley   +1 more source

Antimicrobial Efficacy of a Taurolidine‐Based Antimicrobial Compound on Contaminated Surfaces Simulated in a Standardized 4‐Field Test

open access: yesAdvanced Healthcare Materials, EarlyView.
As implantable medical devices become indispensable to modern medicine, a silent threat grows alongside them: device‐associated infections. Despite decades of antibiotic innovation, infection rates keep climbing, costing lives and billions in healthcare expenses.
Benito Baldauf   +5 more
wiley   +1 more source

Enhancing Magnetic Hyperthermia at the Cell Membrane by Anchoring 92R‐Functionalized Magnetic Nanoparticles to Low‐Endocytic CCR9 Surface Receptors

open access: yesAdvanced Healthcare Materials, EarlyView.
We present a strategy to enhance magnetic hyperthermia therapy by modulating nanoparticle–cell interactions. Antibody‐functionalized magnetic nanoparticles targeting the low‐internalizing CCR9 receptor enable spatially controlled membrane anchoring, reducing aggregation and maximizing heat generation under alternating magnetic fields.
David Egea‐Benavente   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy