Results 141 to 150 of about 332,668 (285)
Generalized quasi‐geostrophic equation in critical Lorentz–Besov spaces, based on maximal regularity
Abstract We consider the quasi‐geostrophic equation with its principal part (−Δ)α${(-\mathrm{\Delta})^{\alpha}}$ for α>1/2$\alpha >1/2$ in Rn$\mathbb {R}^n$ with n≥2$n \ge 2$. We show that for every initial data θ0∈Ḃr,q1−2α+nr$\theta _0 \in \dot{B}^{1-2\alpha + \frac{n}{r}}_{r, q}$ with 1
Hideo Kozono +2 more
wiley +1 more source
This work presents a structure‐aware graph convolutional network that models polymers as statistical ensembles to predict macroscopic properties. By combining topologically realistic graphs generated via kinetic Monte Carlo simulations with explicit molar mass distributions, the framework achieves high accuracy in classifying architectures and ...
Julian Kimmig +7 more
wiley +1 more source
We develop a full randomization of the classical hyper‐logistic growth model by obtaining closed‐form expressions for relevant quantities of interest, such as the first probability density function of its solution, the time until a given fixed population is reached, and the population at the inflection point.
Juan Carlos Cortés +2 more
wiley +1 more source
ABSTRACT In the present investigation, a mathematical model with vaccination, treatment, and environmental impact under real data is presented. Initially, we present the model without any interventions, followed by an examination of its equilibrium points.
Bashir Al‐Hdaibat +4 more
wiley +1 more source
Asymptotic formulae of generalized Chebyshev functions
Let \(G_2\) denote the set of squares of integers and let \(Q_r\) (\(r\)-integer) be the set of \(r\)-free numbers \((Q_1= \{1\})\). Moreover, for a fixed \(r,k,m\) and \(N\in G_2\cap Q_r\), \(\omega(r)\leq r-1\), let \(C_{r,k}\) denote the set of positive integers \(n\) such that \(n=N\) or \(n= pmN\) with \((pm,N)=1\).
Calderón, Catalina +1 more
openaire +2 more sources
Hybrid Reaction–Diffusion Epidemic Models: Dynamics and Emergence of Oscillations
ABSTRACT In this paper, we construct a hybrid epidemic mathematical model based on a reaction–diffusion system of the SIR (susceptible‐infected‐recovered) type. This model integrates the impact of random factors on the transmission rate of infectious diseases, represented by a probabilistic process acting at discrete time steps.
Asmae Tajani +2 more
wiley +1 more source
Approximation of Discontinuous Functions by Positive Linear Operators. A Probabilistic Approach
ABSTRACT We obtain approximation results for general positive linear operators satisfying mild conditions, when acting on discontinuous functions and absolutely continuous functions having discontinuous derivatives. The upper bounds, given in terms of a local first modulus of continuity, are best possible, in the sense that we can construct particular ...
J.A. Adell +2 more
wiley +1 more source
Interaction of Dirac δ$$ \delta $$‐Waves in the Inviscid Levine and Sleeman Chemotaxis Model
ABSTRACT This article investigates interactions of δ$$ \delta $$‐shock waves in the inviscid Levine and Sleeman chemotaxis model ut−λ(uv)x=0$$ {u}_t-\lambda {(uv)}_x=0 $$, vt−ux=0$$ {v}_t-{u}_x=0 $$. The analysis employs a distributional product and a solution concept that extends the classical solution concept.
Adelino Paiva
wiley +1 more source
The Variance-Gamma Product Distribution. [PDF]
Gaunt RE, Li S, Sutcliffe HL.
europepmc +1 more source
ABSTRACT We study eigenvalue problems for the de Rham complex on varying three‐dimensional domains. Our analysis includes the Helmholtz equation as well as the Maxwell system with mixed boundary conditions and non‐constant coefficients. We provide Hadamard‐type formulas for the shape derivatives under weak regularity assumptions on the domain and its ...
Pier Domenico Lamberti +2 more
wiley +1 more source

