Results 91 to 100 of about 410,646 (334)
ATOMIC FORCE MICROSCOPY OF BIOLOGICAL SUBJECTS
A review of references on application of the atomic force microscopy for biological subjects’ investigation is submitted. Advantages of this method in comparison with other types of microscopy are shown. Achievements in this area and the problems arising
N. S. KUZHAL +4 more
doaj
Herein, environmental scanning electron microscopy (ESEM) is discussed as a powerful extension of conventional SEM for life sciences. By combining high‐resolution imaging with variable pressure and humidity, ESEM allows the analysis of untreated biological materials, supports in situ monitoring of hydration‐driven changes, and advances the functional ...
Jendrian Riedel +6 more
wiley +1 more source
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart +3 more
wiley +1 more source
Application of atomic force microscopy in cancer research
Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis.
Xiangying Deng +11 more
doaj +1 more source
Cr0.9Si0.1 protective coatings are developed to enhance the thermal‐shock and oxidation resistance of Mg2Si0.89(Sn0.1,Sb0.01) thermoelectric (TE) materials. The coating forms a dense and adherent barrier that suppresses oxygen diffusion and mitigates mechanical degradation during cyclic oxidation, demonstrating its potential to improve the long‐term ...
Mikdat Gurtaran +3 more
wiley +1 more source
Plasma‐assisted hybrid friction stir welding of dissimilar AlCu joints employs localized plasma preheating to balance heat input and enhance plastic flow. The optimized process reduces axial force by up to 35%, refines the microstructure, and achieves ≈96% joint efficiency.
Deepak Kumar Yaduwanshi +3 more
wiley +1 more source
Atomic force microscopy probing in the measurement of cell mechanics
Dimitrios Kirmizis, Stergios LogothetidisDepartment of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology, Aristotle University, Thessaloniki, GreeceAbstract: Atomic force microscope (AFM) has been used incrementally over the last decade in
Dimitrios Kirmizis +1 more
doaj
Can Ti‐Based MXenes Serve as Solid Lubricants for Brake Applications? A Tribological Study
This study explores the first implementation of Ti‐based MXenes materials in brake pad friction composite material. The resulting composite material exhibits a 48% reduction in the wear rate; alongside significant improvements are observed for thermal and mechanical properties.
Eslam Mahmoud +7 more
wiley +1 more source
Mechanically Deposited Wear‐Resistant Amorphous Zr55Cu30Al10Ni5 Coatings
Mechanically deposited from glassy ribbons, the Zr55Cu30Al10Ni5 amorphous coating formed a hard, continuous layer on AISI 1010 steel, tripling substrate hardness, lowering friction, and reducing wear. Despite its rough surface, it showed friction and wear behavior comparable to the crystalline alloy, highlighting its strong potential as a durable ...
Tales Ferreira +8 more
wiley +1 more source
Custom-Designed Glassy Carbon Tips for Atomic Force Microscopy
Glassy carbon is a graphenic form of elemental carbon obtained from pyrolysis of carbon-rich precursor polymers that can be patterned using various lithographic techniques.
Anna Zakhurdaeva +5 more
doaj +1 more source

