Results 91 to 100 of about 410,646 (334)

ATOMIC FORCE MICROSCOPY OF BIOLOGICAL SUBJECTS

open access: yesВесці Нацыянальнай акадэміі навук Беларусі: Серыя фізіка-тэхнічных навук, 2016
A review of references on application of the atomic force microscopy for biological subjects’ investigation is submitted. Advantages of this method in comparison with other types of microscopy are shown. Achievements in this area and the problems arising
N. S. KUZHAL   +4 more
doaj  

Advancing Research on Biomaterials and Biological Materials with Scanning Electron Microscopy under Environmental and Low Vacuum Conditions

open access: yesAdvanced Engineering Materials, EarlyView.
Herein, environmental scanning electron microscopy (ESEM) is discussed as a powerful extension of conventional SEM for life sciences. By combining high‐resolution imaging with variable pressure and humidity, ESEM allows the analysis of untreated biological materials, supports in situ monitoring of hydration‐driven changes, and advances the functional ...
Jendrian Riedel   +6 more
wiley   +1 more source

Multimodal Mechanical Testing of Additively Manufactured Ti6Al4V Lattice Structures: Compression, Bending, and Fatigue

open access: yesAdvanced Engineering Materials, EarlyView.
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart   +3 more
wiley   +1 more source

Application of atomic force microscopy in cancer research

open access: yesJournal of Nanobiotechnology, 2018
Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis.
Xiangying Deng   +11 more
doaj   +1 more source

Enhanced Oxidation and Thermal Shock Resistance of N‐type Mg2Si0.89(Sn0.1,Sb0.01) Thermoelectric Material via Cr0.9Si0.1 Coating

open access: yesAdvanced Engineering Materials, EarlyView.
Cr0.9Si0.1 protective coatings are developed to enhance the thermal‐shock and oxidation resistance of Mg2Si0.89(Sn0.1,Sb0.01) thermoelectric (TE) materials. The coating forms a dense and adherent barrier that suppresses oxygen diffusion and mitigates mechanical degradation during cyclic oxidation, demonstrating its potential to improve the long‐term ...
Mikdat Gurtaran   +3 more
wiley   +1 more source

Microstructural Evolution and Mechanical Performance of Plasma‐Assisted Hybrid Friction Stir Welded Dissimilar Aluminum–Copper Joints

open access: yesAdvanced Engineering Materials, EarlyView.
Plasma‐assisted hybrid friction stir welding of dissimilar AlCu joints employs localized plasma preheating to balance heat input and enhance plastic flow. The optimized process reduces axial force by up to 35%, refines the microstructure, and achieves ≈96% joint efficiency.
Deepak Kumar Yaduwanshi   +3 more
wiley   +1 more source

Atomic force microscopy probing in the measurement of cell mechanics

open access: yesInternational Journal of Nanomedicine, 2010
Dimitrios Kirmizis, Stergios LogothetidisDepartment of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology, Aristotle University, Thessaloniki, GreeceAbstract: Atomic force microscope (AFM) has been used incrementally over the last decade in
Dimitrios Kirmizis   +1 more
doaj  

Can Ti‐Based MXenes Serve as Solid Lubricants for Brake Applications? A Tribological Study

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores the first implementation of Ti‐based MXenes materials in brake pad friction composite material. The resulting composite material exhibits a 48% reduction in the wear rate; alongside significant improvements are observed for thermal and mechanical properties.
Eslam Mahmoud   +7 more
wiley   +1 more source

Mechanically Deposited Wear‐Resistant Amorphous Zr55Cu30Al10Ni5 Coatings

open access: yesAdvanced Engineering Materials, EarlyView.
Mechanically deposited from glassy ribbons, the Zr55Cu30Al10Ni5 amorphous coating formed a hard, continuous layer on AISI 1010 steel, tripling substrate hardness, lowering friction, and reducing wear. Despite its rough surface, it showed friction and wear behavior comparable to the crystalline alloy, highlighting its strong potential as a durable ...
Tales Ferreira   +8 more
wiley   +1 more source

Custom-Designed Glassy Carbon Tips for Atomic Force Microscopy

open access: yesMicromachines, 2017
Glassy carbon is a graphenic form of elemental carbon obtained from pyrolysis of carbon-rich precursor polymers that can be patterned using various lithographic techniques.
Anna Zakhurdaeva   +5 more
doaj   +1 more source

Home - About - Disclaimer - Privacy